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CHAPTER 1

( INTRODUCTION

2The design of optimal controllers for linear stochastic systems

requires an accurate description of the system. However, the construction

of an accurate model of real systems is often not possible. These

inaccuracies can stem from the fact that the adopted linear model may be

only a first-order approximation of a nonlinear system. Also, there may be

actual uncertainty in the parameters of the real system. This type of

uncertainty can arise, for instance, if one wishes to design a single type

of controller for a large number of similar systems, when, for example, the

system is mass produced and it is impractical to tune each controller to

each system. Another situation where this type of uncertainty can arise

is when the parameters of a single system vary slowly over long periods of

time, perhaps due to wear or changes in the environment. These uncertainties,

in this thesis, are grouped into a vector of parameters. We consider I

*)several ways of handling these uncertainties ia the design proces

Often, it is pdssible to assign'a prior distribution t6 the--

parameter vector. Then by considering the unknown parameter vector as a new

set of system states, a nonlinear stochastic control problem can be formed.

However, this type of problem may not be desirable, especially if the

uncertainties were created by linearization of a nonlinear system in the

first place. In this case, one may wish to build a controller that exhibits

adequate performance for all values of the parameter, perhaps based on thej
weight each value of the parameter receives from the distribution.
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Another method is to assume that the parameters vary within a

certain range about a nominal value. The use of an optimal controller for

the nominal value may result in instabilities or poor performance for off-

nominal values of the parameter. To design controllers for these systems,

* ~ some performance must be sacrificed to desensitize the controller.

A third method of handling these uncertainties is to assume that

the parameters are unknown within a given set. This set may be compact,

or have a finite number of values. En many circumstances, one may design

an adaptive controller that identifies the unknown parameter and tunes

itself to the identified model. However, in some circumstances this

identification scheme is not practical, if, for instance the parameters

are slowly varying, or if the parameters jump to different values at unknown

instances in time. In such cases, the identification pxrocess may not have

time to converge before a new identification needs to be made. Then, it may be

desirable to design a controller that does not identify the parameter, but has

acceptable performance for all the values within the given set.

Any one of these methods of handling uncertainties in parameters,

or a combination of them, can be considered when designing controllers which

exhibit desirable insensitivity properties. This thesis will discuss two

methods of designing controllers for systems whose corresponding models have

uncertain parameters. We will consider linear stochastic models of the

form:

W-it = F(e)xt + G(e)u~ + K ~ (la)

Y' = H(e)x~ + Lvt (lb)

t t I
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where e is a constant vector of unknown parameters, and r and i, are white

noise processes. A time average of a quadratic cost is to be minimized:

1Ttu

J =lim f xW x + uW U)dt (2)

Equations (1) and (2) are not well-defined mathematically since

(1) is generated by white noise, which is not a real physical process, andI

(2) is an integral of a stochastic process. In Chapter 2, Equation (1) is put

into Ito differential form, and Equation (2) is correspondingly redefined.

The exact assumptions on the unknown parameters are stated. Finally, an exact

description of the problem that is solved in the design of each type of

* controller is stated.

The first type of controller that is considered we call a least

sensitive controller since this controller minimizes the average cost over

the entire parameter set based on the assumption that all parameters are

equally likely. The second type of controller that is considered we call a

minimax controller since a controller is sought that minimizes the worst-case

weueacobntooosltfth.he ypso sumtoso

In Chapter 3, we consider the unknown parameter to be in a compact

set centered about a nominal value. We also assume that each value in the

se sequally likely, so that a uniform distribution is induced on the set.

the parameter set discussed above. The objective in this chapter is to

design a controller that minimizes the average cost over the entire set.

4 The optimal controller for the nominal value is a linear feedback of estimates

of the full state. To facilitate the solution of this problem, we restrict]
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the class of controllers to the class of linear feedback controllers. However,

the dimension of the controllers is not restricted to that of the dimension of

the states since full-order controllers are not always required to achieve

acceptable performance. Ashkenzai and Bryson [1] have presented a method for

solution of this problem when discrete distributions are assumed. It is shown

that this method may be extended to continuous distributions. We consider the

performance of this type of controller for several examples, and these examples

show that some performance must indeed be sacrificed to achieve lower parameter

sensitivity.

En Chapter 4, we again assume that the unknown parameter is in a

compact set centered around the nominal value. In this problem we seek to

minimize the worst-case performance. A way to design these controllers is to

use the optimal linear regulator for the model that exhibits the worst

performance. However, it is not immediately obvious that these two problems

have the same solution since the model that is least favorable for control may

not be least favorable for state estimation. Looze, Poor and others [7] have

shown that these two solutions are equivalent for the case where there is

uncertainty in the second-order statistics of the noise processes. An

attempt is made to use a similar procedure for the case now under considera-

tion, that is, when there is uncertainty in the system dynamics. Chapter 4

explains how an error model was formed in the case of uncertainty in the noise

statistics, and how this model was used to show the equivalence of the two

solutions in this case. However, for the problem now under consideration,

* this error model cannot be formed, and thus the equivalence of the two

solutions is not clear. Indeed, for the scalar case, we find parameter sets

%.
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such that the two solutions are not equivalent. Therefore, in Chapter 4,

we find all the parameter sets satisfying certain convexity conditions such

that the two solutions are equivalent.

U The examples of Chapter 3 are then considered in Chapter 4. The

least sensitive controllers of Chapter 3 are seen to exhibit superior

performance over a wider range of parameter values in the sets under

mconsideration, but,if the range of parameter values off the nominal value is

large enough, the minimax controllers of Chapter 4 have a lower maximum cost

* than the least sensitive controllers of Chapter 3.

In Chapter 5, a second-order single-input single-output example is

considered. Then, some aspects of the design and performance of the two

* types of controllers are discussed that are not brought out in the previous

chapters. The order of the system allows 'is to investigate the relative

performance of reduced-order least sensitive controllers with respect to the

full-order least sensitive controllers and the full-order minimax controllers.

This chapter shows how maximin controllers for a particular example may be

designed on a numerical basis. Also, the equivalence of this solution to

the minimax solution may be analyzed numerically.

Finally, in Chapter 6, the general properties of the two types of

controllers are discussed. We also discuss the advantages and disadvantages

of each design, and thus outline what factors are considered in choosing

between the two designs. Finally, we discuss what other designs may be

considered to achieve a desirable performance of the control system.
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CHAPTER 2

PROBLEM STATEMENT

The system equations, (1), can be made precise by modelling --

dy
Y= -- Then the system equations can be put in Ito differential

t ~tt

form:

dxt = F(e)x dt + G(O)u dt + Kdw (3a)
tt t t

dy t = H(6)x dt + Ldv . (3b)

t

V t is a vector Wiener process, with

tV

E (dwt/ =0 , (4a)

kdv)

E dvt) dvt) - t (4b)

and Q and R are positive definite.

The parameter, 6, is constant but not known precisely. However, 9

is assumed to be contained in a nonempty, closed, compact set, 9. Also,

the pairs, [F(B),G(e)] and [F(e),H(O)], are assumed to be stabilizable and

detectable, respectively, for each 0 E). The problem is to choose ut to

minimize a time average of the quadratic cost functional, (2). Equation (2)

becomes well-defined:

iT
J(u,) E [lim f (xW x + uW u )dt]

w, T-' 0 txt tt (5)
" .,w , v T * 00

where W is positive semidefinite and W is positive definite.x u

:._. .,.- .- . . . . . .
, , , . ,. 

. . .

;-: -__?: 7" '_''-_- .i . _ _,; ." .' '"." ' ,' -_ --. ,- . '"," , '" ""_' ".:. . .. "'-..,. . ..- _
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At time t, the controller has access to past output measurements,

so that

ut - 1(t,y s ; s < t) , t > 0 , (6)

where P is an admissible control strategy, chosen from a certain class, n..

Every element of H must satisfy the following conditions [31:

* a) u must be causal,

b) p must be such that Equation (3a) has a unique solution that

is sample-path continuous,

c) w must be such that the cost function, (5), is well-defined.

When the parameter vector is known, the solution to this problem

is well-known. The controller is an optimal linear feedback of the least-

squares estimate of the plant states. Although an optimal controller can be

" calculated for every GeE, the correct controller cannot be applied without

prior knowledge of 0. Therefore, when 8 is unknown, this strategy is no

longer feasible.

In the next two sections, two suboptimal solutions that are less

sensitive to variations in the parameter vector are studied.

The first solution is based on the assumption that any OE E has

an equal chance of occurring. Therefore, a uniform distribution is assumed

* over the set,E. Then ut is chosen to minimize the average cost over 8:
iT 77

J(u t) - E{ E [ lim f f (XtW xt + UtWu t)dt]} (7)

" w,v T-00 0

- As a further simplification, u t is assumed to be linear with output feedback.

The problem is then reduced to a constrained optimization problem.

-,-1



~8

The second solution minimizes the worst case performance; that is,

J = min max J(ut O) ° (8)

u En eeet

When a saddle point exists, then (8) has the same solution as the problem,

J = max min J(u,O) (9)6 EE) utE ]T

Solution (9) is equivalent to using the optimal linear regulator for the

OEO that exhibits the worst cost.

LIP

3. t A A.. ~. .. A-
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CHAPTER 3

A LEAST SENSITIVE SOLUTION

In this chapter a suboptimal solution is sought whereby a prior

distribution is assumed for 8 over the set, e. The problem is solved here

for any continuous distribution. However, since the assumption that 0is

equally probable over the entire set is made, the uniform distribution is

assumed in the examples. The problem then becomes one of choosing a control

to minimize the average cost over the entire parameter set. To accomplish

this purpose, the procedure described by Ashkenzai and Bryson [11 is applied

to a series of discrete distributions that converge in distribution to the

continuous distribution. This procedure restricts the control set to linear

* cotrolerswit outut eedbck. The assumption of a discrete distribution,

together with a linear control structurereduces the problem to an optimization

* problem with equality constraints.

Two examples are then considered for scalar plant and measurement

equations. One example has an unknown parameter in the plant dynamics, and the

other example has an unknown parameter in the control gain. The performance of

the two resulting solutions will be discussed. In particular, it is seen that

disturbance attenuation must be sacrificed as more parameter insensitivity is

desired.

3.1. Assumptions on Distributions

As discussed before, the assumption of a uniform distribution is

desired since the parameter is unknown within a given set. However, here we

..........................................
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only assume that a continuous distribution is given. To facilitate the solution

process, a series of discrete distributions that converges to the continuous

distribution is created. Specifically,

f c(), a probability density function defined for eEe

f e fl 81 i=l,...,N
f NO )  0 otherwise

and also,

F(Q) +FC() as N-

where F and F are the corresponding probability distribution functions for
N c

f and f
N c

3.2. Restrictions on the Control Set

The control set is restricted to linear output feedback controllers

of the form:

t= C(p)z t(10a)

i t = A(p)zt + B(p)yt (10b)

where p is a vector of the entries in A(p), B(p), C(p).

As discussed in Ashkenzai and Bryson [1], if all the entries of

A, B, C were specified as parameters, the parameter vector corresponding to

the minimum cost would not be unique, since only the transfer functions from

Yt to ut are of importance. Therefore, the dimension of p must be the smallest

possible for the specified order of the controller and the dimensions of uand yt
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To uniquely specify all the controller transfer functions, the following

dimension of p is required [1]:

DIM(p) = [DIM(ut) + DIM(Y )]DIM(z ) . (11)t t t

In order to standardize the minimal realization of the control

parameters in A, B, C, the following block diagonal form of the control matrices

is used [1]: A01 0 0
A 0 A 2(12a)

A= 0 :2

-' and the A,'s are 2x2 blocks of the form:

0 1"
A, (12b) -

(PAli A2i/

except when DIM(z ) is odd, in which case the last A is a single scalar

ti

parameter.

B

B fi (13a)
B (2)

where

Bi (P Bli PB2i " " (13b)

C (C1  C2 1 ... ) (14a)

where each C has two columns:

i.

.. ...a
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/0 1
P Cli PC2i

Ci (14b)PC3i PC41

except when DIM(z ) is odd, in which case the last C has only one column:(1
p l

C PCi (14c)
PC21

With the assumptions of a discrete distribution and of a linear

block diagonal form of the controller, the problem can be reformulated as an

optimization problem with equality constraints.

3.3. Problem Redefinition and Solution

The system equations, (3), together with the specified block

diagonal form of the controller, (10), form a new closed loop system:
.-,

dxt S(ep) x dt + N(p) (15)

dz t I t dv /

with
Sdw = 0 (16a)

dv/
t

E -(w dt Vdt ,(16b)

Ldvt/\ dv)

where S(6,p), N(p) and V are given by

I4

" "i . 3 -". ' -,
' m "

' % "' " " • " " " ' ' " " " " " " "
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U s~e~p) - (6:) G (0) C(p))(7

90,P) ( B )) (18)

N(P) ~ (19)

For discrete distributions, the cost functional becomes

N
J(p) Z f Joellp) (20)

Using (5),

J(e1 9p) =E l im . t + ZC(P)W C(p)z )dt]

1T

J(eitp) =I- fr I Jtr[W E (x x')] + tr[C'(p)W C(p) E (z z')I}dt
.Tx t t U t tT-'~ 0 w'v w'v

Let

be the covariance matrix of x~ and z, and let

W(P) =.(22)
k\ CA(p)W C(p)/

Then,

1Tj(e P) rnlim tr[W(p)Xt(e.)]dt
T co 0t1
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This expression can be further reduced [3],

J(ei,p) tr[W(p)X(ei)] , (23)

where X(01) for each e is the steady state covariance of xtand zt and is

the solution of the algebraic Lyapunov equation:

S(Oi,p)X(Oi) + X(ei)S'(i,p) + N(p)VN'(p) 0 (24)

Then,

N
J(p,X) = E tr[fiW(p)X(ei)] • (25)

i=l

Minimization of Equation (25) by choice of p, together with N Equations (24),

form an optimization problem with equality constraints.

A Hamiltonian function may be formed:

N
H(p,X,A) = Z {tr[f.W(p)X() + tr[A(1 ) s(1i,P)x(e + X(6 )s'(ei~p)

i=l1

+ N(p)VN'(p)}]} , (26)

where A(8i) are N Lagrange multiplier matrices.

Necessary conditions for minimization of (26) by choice of p are

N Equations (24) plus N equations:

= A(e )S(eip) + S'(ip)A(ei) + f.W(p) f 0 (27).- a x(e) iii

and the gradient equations for p:

3" N 3S(e tp) 3S"(qip)
-_ = tr{[fl W(p) + A( 3) _ + A(Bi ) ]x ( i-Pj iii aPj i jP P

(28)

+ tr{A( i ) [ Np VN(p) + N(p)V 3 ] = 0

for J-l,...,DIM(p).



15

Note that (24), (27), (28) form a coupled system, with (27) adjoint

to (24). However, with a choice of p, Equations (24) and (27) determine

X(Qi) and A(e), and given X(e) and A(e), Equation (28) determines a

value of p that gives a stationary value of J in Equation (25).

The existence of a solution for continuous distributions as a limit

of the solutions of a series of discrete distributions follows from the

Pdefinition of the Lebesque integral and the uniqueness of p.

The covariance equations and the adjoint Lagrange. multiplier

* equations, (24) and (27), have unique solutions for all eOe, so that J(e,p)

is well defined by (23). Therefore, since (24) and (27) are linear, it is

possible to find expressions for X(.e) and A(8) which are continuous in e.

Then,
J(e,p) = tr[W(p)X(O)] (29)

A Hamiltonian function may be formed,

H(p,X,A) f f tr[W(p)X(e)]f(e)d-

(30)

+ f tr[A(O){S(e,p)X(e) + X(e)S'(,p) + N(p)VN'(p)}]de

and

= tr[ p) X(e)]f(O)de
api 8 .

+ f tr{[A(e) 's(op) + aS'(8,p) A(e)]X(e)ld6 (31)
ap1  3pj

+ f tr{A(e)[ 3P VN'(p) + N(p)V ap. ]}de

for j-1,... ,DIM(p).

• : ,: .:. ._" " . " " " -.. ' . . . .- r . . . . . . .... . ,. . ... ., ., .,-.,. . . ., , , .. :;.,;', . " ... . .. . . .. .. ... . -.-. ... , :
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B the properties of the Lebesque integral [5], (26) and (28) converge to

(30) and (31) as N- -. Since p is unique for each solution corresponding

to a distribution,fN(e)

PN Pc as N-'

where pc is the solution for the continuous distribution.

It remains to find a procedure for solving the system (24), (25),

(27), (28). An iterative procedure may be used. At each step, J(p) and

its gadiets, H(p) f~)'.its gradients, p can be calculated given a distribution, fN(a) and

a value of p. Then, J(p) and its gradients may be used to determine a new

value of p for the next step. These steps are repeated until a value of p

is determined that gives a stationary value for J(p). A conjugate gradient

algorithm from the IMSL Library is used to perform the iterations. The

resulting routine is in the Appendix. See also References [4], [6] and [8].

3.4. Examples

The following one-dimensional system will be considered:

dxt =e xdt + 6 utdt + dw (32a)
t 2 t t

dyt  xtdt + dv (32b)

1 0 wdt

E & G)(0 E ])(0
dv 0dv dv0 1

and

T
1 2 2

.:"j(ut ,9) = E [ lira 1~ 2' (x 2t (33) ".
E~~ lm J (x1 + u )dt]

w,v T-o 0

.-.- ..
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I En Example 3-1, 02 will be known and equal to 1, 01 will be uniformly

distributed with E01 = 1. In Example 3-2, 81 = 1 and 02 will be uniformly

distributed with Ee2 = 1.

UThe uniform distributions are of the form:

i' 1J b-a a < 8 <b
fc(0) 0 otherwise (34a)

and

a +b
E c()l C2 (34b)

A series of discrete distributions that converges to f c() is:

(bN-aN) 2 (bN-aN)
iaN,aN+ N-I 'aN + N-i N

fN ) -(35a)
-0 otherwise

and aN, (bN-aN) are chosen such that

E(N1 = Ec(') = 1

-4. (35b)

VARN(B) = VARc (0),

For the uniform distribution, U[acb]

b
E (0) fc 1 Od"
c b -a

a c C
C

a +b
C C (36)

c 2

. .
,4

- - -- . - . - . -4• -.- ..: :.-"--4, . -
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VAR(e) b 
2 d / +b a 2

VA=() f b -a- 20 e2)

a c c
c

(37)
1 (bc-a 2
12 (b-a

For the discrete distributions fNO),

N
E (6) E z -
N N i

a +
N+bNEN(e)- 2 (38)

Ni1 ( N aN+bN)2
al VARN(e) = N 1e2 -

=1 2 1 (bN-aN) 2  1 (N- 2 )(bN-aN) 2 2
":[VARNC0) Nf aN + N [a N  i + -! '  [a N 

+ 1 NI + NbN
VARN() (N-1)] N N- a (N-i) N N

+( N N+bN) 2

VARN(e) +' ~

N + 21
2a (bN-aN) (bN-aN) 2

N N ((N-I)

1 2+ 4aN(b -aN 4 (bN-a) 21
+ N (. (N-1)

2 + 2 (N-2)aN(bN-aN) + (N-2)
2 (bN-aN) 2

La - (N-i) (N-I) 2  j

(N-2) 2
a +

N N

.. o',-
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2[1 + 2 + + (N-2)]aN(bN-aN)
+ N(N-1)

[2 + 22 +... + (N-2)2 ]
[ (bN-aN)

+ N(N-1)

Let

C' S~ = 0

S =5
o ~(39) ".

N N-1

Then for N > 2, [12 + 22 + + (N-2)2] = SN-2. Also,

,-.. (N-2) (N-l)[1 + 2 + + (N-2)] = 2
2

Therefore,

VARN(O) N 4 bN N 4 aNbN

+ _N- N2) aNb N + SN2 ( -N

N(N-1)2 (bN-aN) -

VARN() N(N (ba (40)

Then using Equations (35b)

(b C-a )
(bN-aN) (41a)

N 4N._.
NN(-1) 2)

(bN-aN) -41baN  (41b) '-

N 2

Given a continuous distribution, (34), Equations (35a), (39), (41) describe

the series of discrete distributions converging to f (e).

The block diagonal form for first and second-order controllers

are:

. .o . ,,
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1st order -

Ut = Z
tt (42)

dzt = PlZtdt + P2dyt

The closed loop system is

t) ( l )(t)dt + (1 )(w) (43)

dt/ P2 Pl zt P/dt-

2nd order -

(it\
ut =(0 1) \z2t)-

dzit) 0 1 zP(dt + dy (44)

(dz2  p4 ( i
\d2t P1 P2 z2t) \P4

The closed loop system is(dx a 0 e x 1 0t 1 2 /V ( dw
dz = P 0 1 Z:t dt + 0 p3  . (45)

dvt

dz2t P4 Pl P2  2t

In Example 3-1 we set e = 1 and consider 9 unknown. Let

x(8) =,A~e)=
X 2  X 3  A 2  A 3/

Then Equations (24), (27), (28) reduce to:

(24):

291X, + 2x2 + 1 0 0

P2Xl + ('1 
+ P2 )Xl 

+ X3 =0

2p2X + 2P1X3 + 2= 0
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3 (27)

201A1 + 2p2A2

A1 + (61 + pl)A 2 + P2A3  0

2A2 + 2plA3 + f =0

(28):

'3H

- = 2A2X + 2A3X 0
p1 2 2 3 3 -

3H 3_2 A2X1 + 2A3X2 + 4A3 P 2  0DP2

The gradient method discussed earlier will be used to solve these

equations. However, since the procedure is a local one, an adequate starting

point must be found. One such point that has proven useful is the optimal

* regulator solution for 8 = E8 =1. This can be found by solving the well-

known optimal regulator equations and transforming them into the block

diagonal coordinates. The optimal regulator for 6l = 1 is described by [3]:

ut= - Px (46a)
t

dx =Kx dt + (- P -K)xtdt + Kdv (46b)
t t t t

2 I
2P - P+ = 0 , P = I + V2= 2414 (46c)

2K - K2 + 1 = 0 K = 1 + Y2 = 2.414 (46d)

But, in block diagonal coordinates,

ut = zt

So the transformation, it z t is used, and

dzt = - PKx tdt + (I - P K)zt dt - PKdvt

Comparing with Equation (43),

S. . . .
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dzt p2xtdt + pIztdt + P2dvt

we find

1Pl - (1- P- K)

P2  PK

With P f 2.414 and K = 2.414, the starting point is calculated as,

pl = - 3.828

" P2 = -5. 828

Optimal values for three uniform distributions are calculated. The

solutions for some approximating discrete distributions are also shown.

. U[0.9,1.1] VARO f 0.00333

N Pl P2

3 -3.8275 -5.8915 16.6942
7 -3.8273 -5.8917 16.6948

15 -3.8273 -5.8917 16.6949
continuous -3.8273 -5.8917 16.6949

U[0.7,1.3] VAR = 0.03000

N Pi P2

3 -3.8505 -6.3474 18.2374
7 -3.8453 -6.3577 18.2717

15 -3.8443 -6.3595 18.2t6
continuous -3.8441 -6.3600 18.2792

U[0.5,1.51 VARe - 0.08333

N P1  P2  J

3 -3.9481 -7.1189 20.9582
I 7 -3.9333 -7.1679 21.1293

15 -3.9299 -7.1767 21.1605
continuous -3.9289 -7.1791 21.1693

Note that when the variance is small, convergence to the continuous

solution is very rapid, as can be seen especially in the U[0.9,1.1] distribu-

tion, where four significant figures are achieved at N= 3. However, the

- * -°-
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K convergence rate decreases as the variance increases, so that for the

U[0.7,1.3] distribution four significant figures are not achieved until

N =15, while for the U[0O.5,1.5] distribution even more exact distributions

are required for the same precision.

Once optimal parameters for a particular distribution are found,

it is interesting to see how the actual cost varies as a function of 6. It

is desired that the cost incurred for a particular e be as close as possible

to the cost incurred if the optimal regulator was used for that value of 6.

Therefore, defining JLS(6 ) as the cost incurred by the least sensitive

controller, and J P 6 as the cost incurred by an optimal regulator designed

for e, a performance measure that may be used is a plot of J S()- iOPT (6 )

versus 6. Some interesting properties of these systems can be discovered.

Figures 1 to 3 show JLS(6 ) - iOPTe) for the three distributions

considered. From these curves, several properties of the least sensitive

solutions can be discerned.

1 1) As can be expected, the relative cost increases as the true

*value of e deviates from the mean. This is a desirable property since less

* performance is sacrificed as the true value of 6 moves toward the nominal

* value.

2) J OPT (e) is not achieved at any e. If J OPT (6 ) was achieved atI

a value of 9, it would be an optimal regulator for that 6. Therefore, the

least sensitive solutions are not optimal for any 9. Also, this fact shows

that disturbance attenuation is always sacrificed to achieve less sensitivity.

3) More disturbance attenuation is sacrificed as less sensitivityI

is desired. This property may be made clearer by investigating the perfor-

mance at the mean:
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J LS (e 1 1 OPT e81

8.4-

8.2

8.1-

'0.

8.98 8.95 1.88 .511

Figure 1. JL - OP vs.9) e Oi e1 U[0.9,1.1]l.
LS OP JoPT2 1
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~LS 1~ OP-

Figur 2.5 
is996., [.,.

i~L OPTA1 -2oT(1

I.,

3-

2-

I.%

0.7 9.8 0.9 i.e I.I 1.2 1.3•-°
LFigure 2. JL -JOP vs.9 1, 1 iU[0.7,1.3]. I

-' .
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" Distribution VAR0 JLS ( 1-0) - OPT(1.0)

U[0.9,1.1] 0.00333 0.03
U[0.7,1.3] 0.03000 0.31
U[0.5,1.5] 0.08333 1.39

As can be seen, performance at the nominal value of 9 deteriorates as the

variance of 8 increases.

4) The least sensitive controller is biased in the sense that

the minimum value of the relative cost occurs at a value of a that is higher

than the nominal value. This bias may be quantified by calculating the

value of 8 at the minimum as a percentage of the full deviation possible.

Distribution Bias Full Deviation

U[0.9,1.1] 15% above 0.1
U[0.7,1.3] 33% above 0.3
U(0.5,1.5] 45% above 0.5

Figure 4 shows JoPT(8) as a function of 8. As can be seen from this figure,

the controller is biased toward a's that are associated with higher costs.

Also, the percent bias increases because JO(a) increases at an increasing

rate.

Second-order controllers may be calculated for this example using

the same algorithm. To calculate a starting point, a comparison is made

between the transfer functions of the first and second-order controllers:

first order: U(s) P2
Y(s) s - p1

p3Pl."

P4 (s + -)

second order: U(s)
m Y(s) 2lPl - PlP2 + Pl

(s- p) s + P P +
"i s + PI P2

p I

t.4.- .,.. .-...,.., .5*-'..-', .- .',- , .*.. . -* ...*-. . *i::aIL L -" -- " - L -' " ,, £ : .
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OPT 1

20-

0.0 0.5 1.0 .52.0

Figure 4. J vse,9 e -1.OPT 12
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Using the starting point for the first-order controller, a starting point

for the second-order controller can be formed by matching the two transfer

functions. Let

P (second order) = p, (first order)

p1 (econ orer) p1 (first order)
P4 (second order) = P2 (first order)

Then, P2 and P3 can be chosen so that the second pole is stable, and nearly

cancels the zero. Therefore, using the starting point for first-order

- controllers:

pl= - 3.828

= - 5.828

set

S pl = - 3.828

P4 =-5.828

Let p1 - P2 = i,

then P2  pl - 1 = - 4.828

. Then, so that s + pl -P 2 cancels the zero, s + p set

p4

w p
p4-=D - D^l = 1

"P4 P

p4
P 3 = Pi 1.522

Therefore, the starting point for the second-order controllers is:

p1 = - 3.828

2 - 4.828

P3 = 1.522

P 4 -5.82 8

.. =
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Second-order controllers were calculated for the same distributions.

The results are summarized below.

U[0.911.1I Pip 2  p3  p4

1st order -3.8273 -5.8917 16.6949
2nd order -4.4948 -5.0194 1.5411 -5.9062 16.6948

U[0.7,1.31 P1  P2  P3  P4

1st order -3.8441 -6.3600 18.2776
2nd order -5.5380 -5.3948 1.6626 -6.4557 18.2722

U[0.5,1.5] P1  P2  P3  P4  J

1st order -3.9289 -7.1791 21.1693
2nd order -7.4618 -6.0202 1.8371 -7.3618 21.1397

The percent improvement in J may be calculated:

Distribution %AJ

U[0.9,1.11 0.0006%
U[0.7,1.3] 0.0295%
U[0.5,1.51 0.1398%

These figures show that the improvement found using the second-order control-

lers is very low, but the improvement increases as the variance of e increases.

Figures 5, 6 and 7 show a plot of JLS (first order) - JLS (second order) as

a function of q for the three distributions. These curves show that this

second-order controller does not make improvement over the entire range of -.

However, it can be seen that the improvement occurs for -'s that are

associated with higher costs.

In Example 3-2, = 1 and 2 is considered to be unknown with

EP = 1. Using the same method as in Example 3-1,with the same starting points,

optimal values for first and second-order controllers are calculated.
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[-1 (1 st order) J JLS(2nd order)] x 03

8.6-

8.2-

-0.2

0.98 .95 Lee LOS1.1

Figure 5. J LS lst order) J JLS(2nd order) vs., 1' 2=1, .UO911
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JLs(ist order) - JLs( 2nd order)
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8": .7 0.8 0.9 1.8 t.t .2 t.3

*]: Figure 6. JLs(lSt order) - JLs (2nd order) vs. el, 92=1, 'I'U[0"7,1"3]"
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SLS (1st order) - JLS(2nd order)

i8oi.

,* I
sic

-I

l el

-615- -w- -r -r -r -v -r-

8.4 8.6 8.8 1.8 1.2 1.4 1.6

Figure 7. J(1st order) - JLs( 2nd order) vs.- , 12=1, -.1-U[0.5,1.51.

.LS .... . . .
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U00.9,1.1] VAR6 = 0.00333

P1  P2  P3  P4  J

first order -3.8031 -5.8707 16.7323

second order -3.4583 -4,7587 1.5493 -5.9083 16.7314

U[0.7,1.31 VAR6 - 0.03000

Pl P2 P3 4 J

first order -3.6087 -6.2470 19.0127
second order -4.1535 -5.1693 1.7693 -6.5897 18.9244

u[0.5,1.5] VAR= 0.08333

P1  P2  P3  P4  J

first order -3.2658 -7.2651 25.8909
second order -5.6600 -6.1005 2.2744 -8.2686 24.9534

Figures 8, 9 and 10 show plots of JLS(e) - JOPT(6M versus a for the first-

order controllers. Basically, the conclusions here are the same as in

Example 3.1, and only a few differences will be noted here.

1) The relative cost for the parameter in the control gain is,

: 'in general, higher than the relative cost for the parameter in the plant

dynamics.

2) These controllers are biased below the mean. To quantify:

Distribution Bias Full Deviation

U[0.9,11.] 15% below 0.1

U[0.7,1.3] 42% below 0.3
* U[0.5,1.5] b6% below 0.5

Notice also that these biases are greater than in Example 3.1.

Figure 11 shows that Jo(9) is greatest for parameter values less

than the mean, which shows why the biases are below the mean. Also note that

-.-

" ."
• " " " " 1
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LS - JOPT( 2)

0.4-

-~~ 0.3-1
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0.2-
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Figure 8. 1LS - JOPT vs. a2' l U[0.9,1.1].
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JLS(e 2) - JOPT(e 2)

8->:

1 -6- .

4- - __-_

2- I°

T/FTr -n FFTT e-2

0.7 8.8 8.9 1.0 1.1 1.2 1.3

Figure 9. J - JOPT vS. 2t 1=1  2 U [0 .7 1 .3
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Ki JP(e) is generally greater than in Example 3.1, and increases at a faster

rate than in Example 3.1, thereby explaining why the relative costs and biases

are greater than those in Example 3.1.

3 For second-order controllers, the degree of improvement is also

greater than that of Example 3.1.

Distribution %AJ L (Ex. 1) %AMLS (Ex. 2)

U[0.9,1.1] 0.0006% 0.0053%
U[0.7,1.31 0.0295% 0.4644%
U[0.5,1.5] 0.1398% 3.621%

-Note that in this case, the improvement can become significant although still

* not very great.

Figures 12, 13 and 14 show JL (first order) - JL (second order)

- for this example. As seen before, a savings is not made over the entire

parameter range, but the improvement is made for e's associated with higher

- costs.

- 3.5. Conclusions

To conclude, it has been shown how the method of Ashkenzai and

Bryson may be used to find least sensitive controllers for systems with

*parameters described by continuous distributions. The rate of convergence

of the solution is very rapid although it slows down as less parameter

sensitivity is desired.

The performance of the least sensitive controllers was discussed.

C_ It was concluded that the performance of the system decreased as the distance
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[JLs(lSt order) - JLs(2nd order)] x 102

.1 LS, LS

8.4-

8.2-

6.

0' -8.2 F I F TT WI T 02

.98A1.86 1A8 1.18

Figure 12. JLs(iSt order) - JLs( 2nd order) vs. 62 , el=l

0 2 - U[0.9,1.1].
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d Ls1St order) - JLS( 2nd order)

0.4-

8.2-
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Figure 13. JLS (1st order) - JLS(2nd order) vs.- 2' 1, 2' -U[0.7,1.31.
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JLs(lst order) - JLs(2nd order)
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S1 2

8.4 8.6 0.8 1.0 1.2 1.4 1.6

Figure 14. JLS USt order) - LS(2nd order) vse 2 9 ai =1, 2"U[0.5,1.51. -
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of the real parameter from the nominal value increased. Disturbance

attenuation was seen to be sacrificed as less parameter sensitivity was

desired. Also, the controllers were biased towards those values of 6

n associated with higher costs. Finally, it was seen that second-order

controllers did not, in general, demonstrate much improvement over the

first-order controllers,

i Ii

r I
,°]

p

i
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CHAPTER 4

A MINIMAX SOLUTION

In this section, we seek to find the optimal controller for the -

value of the unknown parameter that corresponds to the worst-case model.

This problem is characterized by (8):

J(Uo o) 0 min max J(u ,)

t

where J(u ,B) is given by (5). A way to calculate the solution is to find

the optimal regulator for all possible models and then to maximize the

corresponding cost over the parameter set. This problem is characterized by

(9):

J(uo,e) max min J(ut e)
,- @ u ERH

For the solutions of these two problems to be equivalent, a

saddle point must exist at the solution point. Looze, Poor, et al. [7] have -

shown that a saddle point exists when the uncertainties are in the second-

order statistics of the noise. However, some additional convexity assumptions

are needed for the parameter set, 9, in this proof. We have made an attempt

to use the same method to show the existence of a saddle point under the

current assumptions. However, this cannot be done since, as seen later in

the case of scalar systems, the saddle point does not exist for all types of

parameter sets under consideration. Therefore, we state what conditions must

be satisfied in Theorem 2, and then for scalar systems, we find the largest

sets such that the saddle-point condition holds.

I ,}i ;. -:- :-.i-:; ., >d$ 1 : ?: iL- .-:?j~i. ?:?.j.-iil i .iii.L 1 -i? . : - L . -. -2.--.-- -. --. -.- ii.- -:iii: .. -
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The examples from the previous section are then considered. The

minimax solutions for these examples are calculated, and using the results

for scalar systems, the minimax solution is shown to enjoy the saddle-point

Sproperty for the sets under consideration. The performance of the minimax

controller is compared to the performance of the least sensitive controller.

It is generally seen that the least sensitive controllers exhibit superior

performance over a wide range of parameter values in the set.

Finally, we include a note on the notation used here. A subscript

"" denotes that the matrix in question is a function of the unknown parameter

vector. A subscript of "o", or no subscript, indicates that the matrix is

evaluated at the maximin solution.

U

4.1. The Maximin Solution

To solve (9), the optimal linear regulator is determined for all

CE E), and the resulting cost is maximized over CEO. The optimal linear

regulator is [3]:

ui - W uG P8x t  (47a)

dx =(F e - G P dt + Z-H(LRL') d - H x dt) (47b)

F P + PF - P G W_ Gp +W = 0 (47c)

F Z + Z F- Z H (LRL-) H Z + KQK= 0 (47d)

The optimal cost is

J(u ,i) = tr[PeKQK- + P G W uiGP.ZI] (48)

. . - . . . . . . .° ., .
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Maximizing (48) over eEe with P6 and Z given by (47c) and (47d) gives the

maximin point, (u,8o) The cost at this point is

J(uo,) tr[PKQK + P G-W-G-P Z (49)
0 0 OOU 0 0 0

In order to investigate the existence of a saddle point at this

solution, an expression for the cost of the maximin control at other values

of e is needed. By applying the control, (47) evaluated at 0o, to the system,

(3), the following closed-loop model is formed. Let

= Fe -G 6Wu l-l ) (0
6 uE H-(LRL-) -H F -GW_ -GP - (LRL-)H) 5 a

1K 0
N- --(K -- (50b)0 -H(LRL-)'-IL

., .. ,j =(50c)0 PGW ) G'p

u

Then the closed-loop model is

/dx\ ( \/w\
t) t = S dt d wt) (51)

t t

The corresponding cost is (under the assumption that S is a stable matrix

S" for all eE - which will be justified later)

J(uo,6) = tr(W X) , (52)

where X is the positive definite solution to

X+ S+ ff 0 (53)
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Let

2 3

- Then Equation (52) reduces to

-1

J(UoO) = tr[WX 1 + PGWu GPR (54)

Also, (53) leads to three equations:

FeXI + XF - G WlGPX - X2PGWulG- + KQK= 0 (55a)

F X2 - Ge WulGPX3 + X1H4(LRL)-'HE + 2 - - H-(LRL')-'H ' = 0 (55b)

(F - GW G'P - EH'(LRL') H)x 3 + X3 (F - GW- G-P - EH-(LRLI)- H)-

• . (55c)
+ ZH-(LRL-)IHZ + EH-(LRL-) -H X 2 + X2H (LR

L -)-IH Z = 0

Equations (54) and (55) represent the cost incurred by the maximin controller

for models that correspond to all the different parameter values in the set.

4.2. The Minimax Solution - Existence of a Saddle Point

The solution to the minimax problem, (8), exists, and is equal

to (9) if a saddle point e"'sts at the solution, J(u ,). The saddle point
0

is characterized in the following theorem.

Theorem 1 [2]: There exists a pair (Uo )E Q x 19 satisfying the saddle-point

condition:

J(Uo ') J(uoa o) < J(ut o) VutE , e 0 (56)

if and only if the values of (8) and (9) are equal.
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It is necessary to show that condition (56) holds. The right-hand

side follows immediately from the fact that u is the optimal linear regulator

for 0 . Looze, Poor, et al. [7] prove the left-hand side for their case by
0

establishing the existence of the maximin solution to (9), and then showing

that the condition that the Fr~chet differential of J(u ,0) at (uoe ) is
t 0

- nonpositive for all E E is equivalent to the left-hand side of (56).

To follow similar logic in the present case, a further restriction

must be made on the parameter set. Specifically, we assume that 0 may be

split into three vectors, eF' aG and aHP where the following conditions hold:

F = F(6F) e F EeF

Ge = G(OG) E G  (57)

H@ = H(6) erEe HHe = Oa a H E

and E) eG and EH are disjoint, convex sets, and eFx OGx eH = .

Since the pairs (F9,G9 ) and (F,,He) are stabilizable and detectable,

respectively, and since u is an optimal regulator, J(u0 ,O) is bounded and

continuous in . Therefore, since 0 is compact, the maximin solution to (9)

exists.

We now make the dependence of J(u ,) more explicit:

J(U0 ) = J(uo,FeGeHe) (58)

and we will refer to (F9 ,Ge,H 0) as the point corresponding to (9). Let

(Uol o ) (UoF,G,H) be the maximin solution. Then the Fr~chet differential
00.

of (48) with respect to F:,G 9,H9 at (F,G,H) must be nonpositive in every

. direction into 0. The Frdchet differential of (48) is now calculated with

respect to each of the parameter vectors.

p . 1
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We start with Equation (48),

J(UoFSG69H) tr[P KQK" PG W-IG'P zJ

The differential of J(u ,FevGeH ) with respect to F at (F,G,H) is

6J(uoF,G,H ; AF) = tr[SP KQK' + 5PGW-G'PZ + PGW-G'sPZ+PGW-G'PZ]
u u u

(59)

- where 6P and Z are the Frdchet differentials of P and E at (F,G,H), and

can be calculated using (47c) and (47d).

For 6P we use (47c):

F'P + P F - P GW-1G'p + W = 0
u x

nF'P + F'6P + 6PF + PI F - 5PGW- G'P - PGW- G' P = 0
u u

(F- GW-IGIp)'SP + 6P(F - GW-IG') + LF'P + PLF = 0
u u

Let A = F GW -G'Po Then,U

A't pAF)eAt

NO f e (AFP + (60)

0

For 5Z we use (47d):

-1i

FY + ZF- EH-(LRL) HZ + KQK = 0

,FY 4 F + ;iF- + AF - 3H(LRL-)-lHZ - H(LRL)-IH6 - 0

-IH -lH
(F- H'(LRLV) H)6 + 6Z(F - !H'(LRL-) H)' + -'F' + EAF' = 0

Let B F - ZH'(LRLV')V . Then,

II
e_ (,FK + E"'F') dt (61)

0
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Substituting (61) and (60) into (59),

-11-
6J(UoF,G,H ; AF) = tr{6P[KQK' + GW G + ZPGW -G-] + [PGW-IG-P]6}"uu u

tr{f eA't[AF'P + PF]e Atdt[KQK- + GW-1 G-P + EPGW-1 G--u U
0

+ [PGW-1G'P]J e~t[AFE + EAF-le Btdt}u 0
0

- tr{[AFAP + PAF]J e At[KQK' + GW-IG-PE + ZPGW-G-]e A'tdtu u
0

+ [AFE + EAFA]j e B t[PGW- G'Ple Btdt}
U

0 -

6J(uoF,G,H ; AF) = 2tr{[MFlP + EMF2 ]AF} (62)

(F - GW uG'P)MFI +MF1(F - GW -G'P) " + KQK" + GW -G'PZ + ZPGW G = 0 (63a)""U U U

(F - ZI(LRLA) H)' MF 2 + MF 2 (F - ZH(LRLA)-H) + PGWIu - 0 (63b)

Equation (62) with Equations (63) describes the Fredhet differential of

J(uo,F,Ge,H) with respect to Fe at (F,G,H). -

In order to find the differential with respect to G8 at (F,G,H) we

again start with (48):

J(UoF,GH) tr[PeKQKA + PG Wu1 eee]

Then, using (47c) and (47d),

J(u ,F ,GH) H tr[W E + P Z Hl(LRL-)-@H Z
0 ev ee xe eeae e~ e

The differential of J(uoFe,Ge,He) with respect to Ge at (F,G,H) is

6J(uoF,G,H ; AG) = tr{5P[2H'(LRL') HZ]} (64) -'

where 6P is now the Frdchet differential of P0 with respect to G9 at (F,G,H),

and can be calculated using (47c):
- t
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F56P + 6PF -6PGW- G'P -PAGW- G'P -PGW AG'P -PGW- G'6P =0

0 UU

tr1 Pt -1-11

(F tr{ [-PAGWP + PW 1 G-P)f eA [-HLR) lHZAtdt}0

6PuF,, e [-AG)-G' =2r{ W'G'PP]AG (66)

Euasutn (6) it (6)eciethrhedfeenalo

wi~t epc GaF,G,H).if &ti

u u

6J(uF,G,H ;AH) = tr[PW 0'P]A} (68)

(F G- GP)M M F GW G-P- H'(LRL) HZ 0 (67u G G7
Equtio (66 wih(7-1cie h rce iffeeta fJ(o9F e9

(it repc to(LL G)5 at r(F - H (LI) H)-Z.i D H

S= e [-ZHAH(L) HZ{PG G HLL Zed (69)6u
whr Zi o h rcetdfeeta fE wt rsett t4,,)

and an b calulatd usng (7d)

F6Z +. *- * - * .. .*. * .-. .HE E H ( R ' - . E -( - V . - . . , .-- . -A *

- ~ ~ ~ ~ ~ ~ ~ ~ H(R' WE 0 - -, --- , ---



52

Substituting (69) into (68),

Btt6J(UoF,G,H ;AH) tr{[PGW G'Pl [-EAH(LRLL)-)HE -EH(LRLG G-AHE]
0 "e 't dt }

[' "= r{EA'(LRL')-"HE + E.H-(LRL-)-'AHE]7* eB [-PGW-iGG-Ple dt}

6J(uo,F,G,H ; AH) = 2tr{[EMHEH'(LRL') IAH} (70)

,...-la -- -1

(F - .H'(LRL ) H)MH + MH(F - EH'(LRL) H) - PGW Gp = 0 (71)[-j . U

Equation (70) with (71) describes the Frichet differential of J(u ,FBPGe,H6 )

with respect to H at (F,G,H). This completes the calculation of the Frdchet[0

differentials.

Consider an arbitrary point, (F ,G ,H ) in e. Since 8 F G and 9H

are convex, the line segment joining (F,G,H) and (F,,G,,H is in 8 and

(AF,AG,AH) = (F0 - F, G0 - G,H0 - H) (72)

is a direction into E. Since (F,G,H) is the maximin solution, differentials

(62), (66) and (70) are nonpositive. If by setting differentials (62), (66)

and (70) nonpositive we can show that the left-hand side of (56) is true,

then a saddle point exists. This can be summarized in the following theorem.

Theorem 2: Let the Fr~chet differentials (62), (66), (70) corresponding to

the maximin solution be nonpositive:

tr{[MFIP + EMF2 ] (F0 - F)} < VF0 Y F (73a)

tr{[WuG'PMGP](G - G)} < 0 VG EG (73b)

tr{[MHZH'(LRL')- ](H - H)} < 0 VVe (73c)

where MFl, F2' MG, MH are given by (63a), (63b) (67), (71).

.-"
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i Consider the left-hand side of (56) in view of (54).

J(Uo,Fe,Ge,He) < J(UoF,G,H) (74a)

tr[W i, + PGW 1GPX3 tr[W iO+ PGW: G-P0 (74b)ie u 36 1 30

where XI, and X36 are given by Equations (55), and X0 and X30 are given by

Equations (55), evaluated at e.-m 0

If (73) implies (74), then a saddle point exists, and the solutions

of (8) and (9) are equal.

We have shown that (73) is true since the maximin solution exists.

Also, the right-hand side of (56) is known to be true. Therefore, if we can

show that the left-hand side of (56) is true using (73), Theorem 1 can be

* used to establish the existence of a saddle point and the equivalence of the

two solutions.

Looze, Poor, et al. [7) take advantage of the fact that the system

parameters are known, and by use of the transformation, et  xt - xt, an error

model can be formed. Using this error model, an expression for J(u 0,) can

be found such that the corresponding equations to (73) and (74) are identical.

However, under the present circumstances, this comparison is not possible.

This is true because uncertainty in the system parameters makes the formation

of an error model impossible. Therefore, Equation (74b) is dissimilar to

Equations (73), and it is not immediately apparent that (73) implies (74).

Indeed, as we see in the case of scalar systems, (73) does not imply (74) for

all types of sets in the class under consideration. We now undertake the

study of this problem for scalar systems, and characterize all the sets in

the class under consideration for which the saddle point exists.

-1

......................................~ _____ . .
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4.3. Scalar Systems

The existence of saddle-point solutions for scalar systems will be

studied for a large class of convex sets. The simplicity of scalar systems

allows for a more thorough investigation of the properties in Theorem 2, and,

therefore, we gain better insight into the structural properties of the

problem at hand. First, we will show how Equations (73) may be used to char-

acterize the maximum solution for the class of convex sets that satisfy the

stabilizability and detectability assumptions. Then we will show that

Equation (74) can be verified only for certain sets within this class. j
First, the class of convex sets will be described. For scalar

systems, the parameter vector (F,,G,,H6 ) can have at most three scalar

parameters that we represent by (felgetha). Convex sets that satisfy the

conditions, (57), consist of three sets of intervals on the real line. To

satisfy the stabilizability and detectability assumptions we require that

these intervals do not contain the point zero. To allow for the possibility

that one or two parameters are known, we allow one or two of these intervals

to be reduced to a single point. Therefore, the class of sets we consider

is E such that:

X =E :E= E u Ue , (75)
F G H

and F Ft E H are each one of the following:

- {feE [fa' fb f < f < 0} (76a)

or .F = {f E f [fa'fb] 0 < f < f (76b)

or F f = f  f G R , f#0} (76c)

F

• " . . . . : , i; .i , .: - , :;: ; . .. :



55

{ g~~g~~,) O}(77a)
'9 G { g6E[ga'gbJ 0 < (77<bO

or e < (7b

or 'G {gOg gE IR g#001 (77c)

H { h6E[h hb] ha< h1, < 0f (78a)

or 8H =[e a bh 0 <ha < hi (78b)

or 8H = (h e h h e R h 0) (78c)

and we need not consider the trivial case 0 = {(f,g,h)}. Note that the

assumd indpendece off 69g8 and h0 allows us to maximize J(u0 f,.gp~

with respect to f, 9, and h one at a time.

The maximization of (48) over each set in the class, x,can be

performed by using its Fr( chet differentials in the Condition (73) of

Theorem 2. We will consider each condition in (73) one at a time. First,

consider Condition (73a) for f 8 E8 and with 0) as in (76a) or (76b) and

noting that Case (76c) is trivial:

[m Fl P + Zm F2 ](fe f) :0 Vfe ~EE)F (79)

2(f 91P) ml + k 2q + 2 a = (80)

h2 E +g2
2(f - m + (81)2y mF2 w

Equations (80) and (81) can be solved by direct division:

2
2+2g PZ

tMFl 2
2(f g P

w
U
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2 2_ P

w
UmF2  

2

2(f - E

z 2r

We know from the properties of optimal linear regulators that (f - and
2 u(f - ) are stable, which in this case means they are strictly negative.

z r
Therefore, mFl and mF2 are positive, and mFlP + mF2 E is positive. Then,

condition (79) is equivalent to

f < f Vf 9e
e F

The only such point, f, in sets 9 in (76a) and (76b) is at the upper
F

boundary. That is,

f fb for fE [fa9fb] f a< f b < 0 (82)

f= fb for fE [fab] 0 < f < fb (83)

Now consider Condition (73b) for ge E9G and with ( in (77a) and

(77b)-.

2
g) Vg<0E (84)

• ,gw mG (ge.- g ) < 0 g S G (4

u

2 h 2E2
22(f - m) 0 (85)wi' u G z2r

F..
(85) can be solved by direct division:

22

MU 2
Gm=

2(f - w
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2 A
Since (f 0 , < 0. Now consider 9 in (77a), In this case

wu 2 GG
g <0, and therefIore m G > 0. Then Condition (84) is equivalent to-w G

U

I go < g Vg E 9

2 2
Therefore, g = b' With EG in (77b), g > 0, and therefore w p mG < 0. MI
Then Condition (84) is equivalent to:

9 > g Vg E EG

Therefore, g occurs at the lower boundary, g Summarizing the results:

g gb for g6 E [g agb] ga < gb < 0 (86)

g ga for geE [ga,gb 0 < ga < gb (87)

Now, consider Condition (73c) for h, EEH and with EH in (78a)

and (78b): A

h. 2 (h -h) < 0 Vh E (88)

2 -He - OH
rI

h 2 E2 P2
h(f - - mH- g 0  (89)
Zr u

(89) can be solved by direct division:

2 2

Su

mH 2
2(f - )2

Z r
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2
Since (f 2E- < 0 mH < 0. Now consider 9H in (78a). In this case

Zr hE2

h < 0, and therefore -r mH > 0. Then Condition(88) is equivalent to:

h < h VhE9

5- 0 H

-[ Therefore,h occurs at the upper boundary, hb. With )H in (78b), h > 0,

and therefore 2m < 0. Then Condition (88) is equivalent to:
Z r

h > h Vh8E8 H

Therefore h occurs at the lower boundary, ha . Summarizing the results:
a

h - hb for h0 E [hahb] ha < hb < 0 (90)

h =ha for hE [hh 0 < ha < hb (91)

(82) and (83), (86) and (87), (90) and (91) are the solutions for sets (76),

(77) and (78), respectively. The solution for sets in class X can be found by

applying solutions (82) and (83), (86) and (87), (90) and (91) one at a time

" . whenever a parameter is unknown. This completes the solution of the maximin

probtlem for sets in the class, X.

We now wish to verify the saddle-point condition in Theorem 2 by

showing the relation, (74),holds. It will be seen that saddle points do not

exist for all sets in the class, X. However, we can find a class of sets

within X for which (74) can be verified. Recall that the relation, (74),is

part of the saddle-point condition, (56), in view of the expression for

J(Uo,3) in (54). Therefore, to verify (74) we need an explicit expression

for J(Uo,3) = J(uof 0 ,g0 ,hg)• Towards this goal we start with (54),
I. -- 3
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J(u°f gh) = WX + 9w  X (92)
o 1 w u 3U

and X and X3 are solutions of Equations (55):

2ggPX2 2

2fX + k -- 0 (93)
w

f fe2 h2 - ggpi h h Xl
( +2- - ) 2 =0 (94)e u 7 2)x 2  Wu 2

2 h2 Z 2hohZx2  2 2
2 - - + _2 r h(95)

w 2r 3 + 2r  u Zr Zr r

Using (93),

-k q + 2  (96)
2f f w

Using (95),

-h 2 z2  -h ehE22 2
x

z 2 + r (97)
32 h2 z  2 h 2)

2(f - g h ) (f FL-w - E
w 2 ~ w Z2r
u 2r u 2r

Substituting into (94), X2 may be found.

g, gPh,,hL

2 r gogphahZf0 + f - hP hZ u -

wu Z2r (f _ 2 p h 2 fwur 2

wu Z2ru
L'L u 2 k

+ 9 gPh2E2 hhZk 2 q 0

2w Z2 r(f _ 2w h2 2 f2Z2 r

U w u z 2r

p7.
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Solving, and after some rearrangement,

2 2
-f g P h 2 E 2 hahEk 2q(f6- w _ 2

2 + 2 £2r

2w Z2r 2X2r

2  2 2 2 2
(f + f -.-- [f (f - - +  h

w w"Zu 2-. u 2 u £2r w 2 r
u

We substitute (98) into (96) and (97), and then into (92) to find an

expression for J(uo,f , ,h a The final result is

-l

J(uo'feg8'he)  = 2 2 -1 2 2 ggph hZ
If8 + f - f-,] f [(f h Z + - 6 1

we 2u Z2r u z2r w Z2r
u

S22 2 2 222q____ g__ g h2__w gosheh E  h

2Z. r w 2w z r 2w k2r W Z2 r

f-2 tg 2P2 h 2E 2 f (x 2 g22,22 2 h2)+ + 22 )(f + 2 w2

• ,2w Z2r w z2r Wu Z2r
U U

w22 2 2

2 w u z2r

The properties of Equation (99) may be used to investigate the

saddle-point properties of the maximin solutions. We can show that (99)

is decreasing away from the maximin solution locally, so that there always

exist some sets in X such that (74) is verified. We can also show that as

the sets get larger the saddle-point condition breaks down in some cases,

since, as we move away from the maximin point, (99) may start to increase

again until its value becomes greater than the maximin value.
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To show that (99) is decreasing away from the maximin solution,

we first note that since J(uoO) in (48) is the optimal cost at any value

of 6, (99) is bounded below by (48) at any value of feg 8 and he From this

fact, and the fact that at the maximin point (99) and (48) are equal and

continuous, the derivatives of (99) are equal to the derivatives of (48)

at the maximin point. The derivative relations (79), (84) and (88) in view

of (80), (81), (85) and (89) indicate that (99) is decreasing as we move

away from the maximin point into a set in X. Therefore, there exists a set

belonging to X in which (99) is decreasing in all directions from the

maximin point into the set. Since (99) is continuous in this set, (74)

is satisfied, and therefore this is a set in X such that a saddle point

exists.

We have shown that there exist sets in X such that the maximin

solution satisfies the saddle-point condition, In the following, we show

that for a given maximin solution, a largest set in the class, X, can be

found such that the saddle-point condition holds. This set is found by

examining the topology of the level surface,

J(uofageyh) J(uof,g,h) (100)
IR

We show that this equation describes the boundary of the largest convex

compact set such that the saddle-point condition holds, However, this

set does not belong to the class, X, under consideration. Therefore, we

find the largest set in X that is contained in this largest convex set.

We find that there are never any limits to the size of EF but there are
F9

always limits on the size of G and 0.
G H

:. ; .. 9 - .- ***: ., " " ' ". " . . . . . ." .. ~ .. .. " " " ' " " "
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We start with Equation (100) with J(uof,g,h) given by (49):

2 2 E_
J(uo,f ,geh e) = (kqP+

fggqgpheh gggPheh A2

2 g 2  P 
2  ) ( f 2 A f g o g P h ~ h _ _K2_g _ _ _ _ _ _ _).A

(k qp + 2w )(f A + -L wZ2 r + f6A2 +  w 2 )
u w r w Z 2r .

U U
gegPh 0 h

(fe + A)(fA 
+ 2

w Zr
", U

where

2 2
A f (101)w u z 2 r

Using (99), and cancelling out the common denominator on both sides we obtain

the result:

2 2 2
Kf + K2 e + K3fegh 0 + K4g9h9 + Kshe + K6g + K 0 (102)

with
_.1

" i 1= 2p2h2 2 2 21) 2  h 2 (
K2 + (k2qP+ )(f .. (103a)

S2wZr Wu Wu z2r
u

lw 2 g22 2E2 ( g2P h 2E g2p2 2 P h2Z2
2 =(k q+ 2) + (k q

w r Wu Z r u u z r
u

(103b)

K g~h ~ 2 2
K3 gPh (k2qp+ w - )  (103c)

w Z2r uu

gPhZ 2iw~qih g2p2Z g2 h2E
K w (k q2+ + (k -) (103d)

wZw 2u 2ru2 uu

S U-
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K5 q (103e)
2w 2 4r 2

u

gP 2 h2 2 w ,
K= x (103f)

6 2 2
2w z r

2w kq 711Wxk-q. 2j p h2Z)2 - '

K7 = 2 ( (103g)
2W u  k2 r

.

Equation (102) with (103) describes a surface in IR 3, part of which describes

the boundary of the largest convex set such that the saddle-point relation,

(74), holds. This surface, of course, contains the point (f,g,h) and turns

out to be hyperboloid in shape, although Equation (102) is not quite

quadratic. To describe this surface precisely, we will investigate the

contours of (102) in the fg- plane, the fe-ha plane, and the g6 -h plane

at values ho h, go g and f. = f, respectively.

We start by investigating the contour in the f9-g, plane with

h= h. This situation is equivalent to taking eH as in (78c). Equation

(102) then reduces to a quadratic equation of the form:

2 2 2
Kf 2 e 2fa + K3hf g9 + K4 hg + K 6ge + K5h + K7 =0 (104)

A typical graph of Equation (104) is shown in Figure 15. This graph

exhibits three basic characteristics we need in order to construct the

largest set in X that enjoys the saddle-point property. These

characteristics are:

(1a) The graph of (104) is a hyperbola.

(Eb) Curve A intersects the line f = f at exactly one other point,g =max'

where gmax is always in a set EG in X.

". q . , . , "" .. -, ..- , .- ) .- ' . ".., - •" " " • , " . , " . =.- , .:-; .
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Max. Convex Set fd fd f2
dl d d/

9ma/

or g'OCurve A. / df l Curve B

max

f if d<2

Max. Covx e

Curve

f . f f

fo g d= d2

- ~ Cuv e dl---- ~ *-
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(Ic) Curve A never intersects the line,g 0 = g,at a point other than the

maximin point, (f,g,h).

The shaded area to the left of Curve A is a convex set in the

f6-g0 plane, and is the largest set that enjoys the saddle-point property,

since we have already shown that J(uof,g,,h is decreasing at (f,g,h)

in all directions into the area with darker shading. However, this set

is not rectangular and therefore is not in X.

Characteristics (Ia), (Ib) and (Ic) enable us to construct the

largest set in X that enjoys the saddle-point property. This set is shown

in Figure 15 with darker shading.

It remains to show that Characteristics (Ia), (Ib) and (Ic) are .-

true. Necessary and sufficient conditions for (Ia), (Ib) and (Ic) to be

true are:

(Ii) The graph of Equation (104) is either a hyperbola or an ellipse.

(12) There exist two asymptotes of J(uo~f6,g89h) in the f -g plane.

They are a pair of intersecting lines.

(13) There always exists exactly one other point besides (f,g,h) such

that J(u of,g ,h) = J(u ,f,g,h)o

(14) This point is always in some set e of the class, X, under consideration,

and is the point (f,g ,h) as represented in Figure 15.
max'

(15) There always exists exactly one other point besides (f,g,h) such that

0 J(uofg,h) = J(uo,f,g,h).

(16) This point is always on the opposite side of the asymptotes of

J(uo,fgg,h), and is the point (fxg,h) on Curve B in Figure 15.

i7

_i - . .- ' -. -. .. '.',"., , . .-.' . '-" -:-: " - -: : ." 7:
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Conditions (Ii), (12), (15) and (16) verify Characteristic (1a).

Conditions (13) and (14) verify Characteristic (Ib), and Conditions (12),

(M5) and (16) verify Characteristic (Ic). We now show that Conditions

(Ii) through (16) are valid and discuss the precise reason why they prove

that Characteristics (Ia), (Ib) and (Ic) are valid.

Since Equation (104) is quadratic in f6 and g,, and since K1 # 0,

K #0, K# 0 and K# 0, its graph is either a hyperbola or an ellipse.
K 6  K7

Therefore, Condition (II) holds.

From Equation (99) we see that the denominator equals zero for

certain values of f6,g8 and h6 . Setting the first factor equal to zero we

find that an asymptote occurs at

2 2fe +  g - h -Z (105) .

6wu 2r

The graph of (105) in the fi-ge plane is a vertical line. Setting the

second factor in (99) equal to zero we find that another asymptote occurs at

2 h2 ) g9 gPh h_

fe - -- )+ 0 0 (106)
u Z2r wuZ2r

U

The graph of (106) with h, = h in the fg-9 plane is a line. Since the slope

of (106) is different than that for (105), these lines intersect at some point.

Since the numerator of Equation (99) is nonzero for values of f0 and g

satisfying (105) and (106), Condition (12) holds.

Equation (104) evaluated at f = f is quadratic in g,, and1.)*therefore has two solutions. One solution is g, = g. Since this solution

is real, and the coefficients of (104) are real, the other solution is alsoV real, and Condition (13) holds.

-.. , . . . ., .. . . . . ..-. . .- -. - : . .-
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Equation (99) evaluated at fe f and h = h is of the form:

G + G g + G 2

J(uof,ge~h) -1 2 6  G 3g0  (107)(f + A)(fA + G4g0 )

p where

4 2 2 2 2 2g222 2 2 2
I _h E P k fg hZ f 2 ghpG + + (w + (f k- q)

1 4 2 2 2 (wk 2 w 2
2s4r w 2w Z2r w k2r u £2r

u U u
wxk2, 2 2

+ w (f _ - I)2 (108a)
2 w Z2r

2 2 22 2
G2 2w Z + w 2r (108b)

2wr w-r
u u

gZp2 22

h Zh w
X.(

G22- (108c)
U2w z2r

u

G = Ph (108d)
4 22w £r

U

We now show that Condition (14) holds. We consider the cases,

g < 0 corresponding to 1G in (77a) and g > 0 corresponding to E) in (77b),

separately.

Case (1): g < 0 , G= {ge [gab ga < g < 0}

We have shown that the maximin point g equals gb in this case. Therefore,

to prove the validity of Condition (14) in this case, it is necessary to

show that there exists a g E (--,g) such that J(uo ,f,g ,h) = J(uo,f,g,h).
max o gmax

First, note that from Equation (84) and the subsequent discussion we have shown

,,." .7 "............................ ................................
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that J(uof~geqh) is increasing at (f,g,h). blow consider Equation (106) eval-

uated at fe f and h, = h, which yields a value of gewhich we denote by gd:

2 2

w z r (109)
gd 2

gph E
2

w ir
u

(f,gdp h) is the only point where J(u, ~f,gesh) is discontinuous in ge We

show that g < g d so that J(u of~gePh) is continuous over (--,g). Note that

222 2
+ f (f -z - h )

w 2 r w k2r
2- (110)

gph Z

u

Recall from Equations (47c) and (47d) that

2 P 2fP +w
9 x(i)

w
U P

2 2
h Z 2fZ+ kg(12

Using (111) and (112) in the numerator of (110),

2 2~ 2 2 2 2 2 2 2 2
g ph + f~ g P E gph Z + g ph Z + f(f -_. _ h E

2 2
=(2fP + w )h Z g2 P(2fZ + k q) -P . f 2

2 +2w Z w 2
2P Zr u u z r

2
w h 2 22 x g Pk q

=~+ 2 2w Z
2P Zr u
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i Therefore,

222 2
ph + f(f - ) > 0 (113)

w r u Xru

for all (f,gh)GIR with f # 0, g # 0, or h # 0. Using (113) in (110) we

have the result

g- gd <0 (114)

since g < 0. Therefore, J(uo,f,g,,h) is continuous over (--,g). Now we take

the limit of J(uo0fJge.h) as gO Using Equation (107),
G I

1 + G + G g

lim J(u,f,geh) lim
CO 9-co go - CO (f + A)(-fA + G4)

= urn G3g0.. = lim
(f + A)G4g I

Using the definition of A in (101) we note that

2 2
f + A = f -

- - < 0 (115)wi'u i2 r

2 2
p since we know f - w 0 and f - < 0. Therefore, using Equations (108c)

w2
u 2r

and (108d), we note

G3
> 0

(f + A)

and

~g
> 0 for g -:0 and g E (--,g)G 

4

'.' . , -. .-.v, .-.-,'."-"."- ."- . " " -'.,. , .-."--.- . .". .i. " '."-' . .-... i.'. -. 7"7'
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Therefore

lim J(uo f go h) "+ o (116)
ge .+cc

Since J(u ,fg,,h) is increasing and continuous at (f,g,h), then

J(uo,f,geh) < J(uof,g,h) for some neighborhood (g - e,g), e > 0. Since

J(uo,f,geh) is continuous over (--,g) and has limit + as g -- , there

exists some point gmx E (--,g) such that J(uo,f,g x,h) - J(uo,f,g,h).

Therefore, Condition (14) is true for g < 0 and with 8 given as in (77a).

Case (2): g > 0 , G = {geE [g agb]  0 < ga < gb}

We have shown that the maximin point g equals ga in this case. Therefore,

to prove Condition (14) in this case, it is necessary to show that there

exists a gxE (g,-) such that J(u ,f,g axh) = J(uof,g,h). First, note

that from Equation (84) and the subsequent discussion we have shown that

- J(uo,f,g 0,h) is decreasing at (f,g,h). Equation (109) gives the only point,

g'where J(u 0f,g~lh) is discontinuous. Using the expression for g

given in Equation (110), and the relation, (113), we obtain the result

g - > 0

since g > 0. Therefore J(uo,f golh) is continuous over (g,-). Now we take

the limit of J(uo,f goh) as g e . Using Equation (107),

" " + G,

lim J(uof,geh) = lim fA

'."" 00-  go -  (f + A)( A + G4 )

Slim G3g6
g -0 C(f + A)G4

i S . --
*..*

. ., .'"
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lim J(uf,g ,h) = + (117)

"G 3  go fh
" since (f > 0 and > 0 for g > 0 and g (g,-). Since J(uof,g,,h)+ A) 4

is decreasing and continuous at (f,g,h), then J(uo,f,geh) < J(uof,g,h) for

some neighborhood (g,g + E), e > 0. Since J(uof,geh ) is continuous over

* (g,-), and has limit + - as g 0 -, 
' there exists some point gmax C (g,-) such

that J(u ,f,gmxh) = J(uo,f,g,h). Therefore,Condition (14) holds for

g > 0 and eG given in (77b).

We now compute gmax using Equation (107) with (108).

J(uo,f,gmax ,h) J(uo,f,g,h)

G + Gg + Gg G+ G g+ Gg 2
2gmax 3max 2 3

( Cf + A)(fA + G4 g)max (f + A)(fA + G4 g)

* °Cross-multiplying, and cancelling the term, f + A, we obtain

2 2
(GI + G2g + G3g )(fA + G4 g) = (GI + G2g + G g )(fA + G a

By expanding this and factoring out the already known factor, gmax - g,

(gmax - g) [G3fA(gmax + g) + G3G4 ggmax + G2fA -GG 4 ] = 0

Setting the second factor equal to zero, and solving for gmax'

[G3fAg + G 2fA - GIG4.

°max G3 (fA + G4 g)

Using the definitions of A in (101) and GI through G4 in (108), and using a

few manipulations, we obtain the final result:

*, , * ~ ~ - . . . . . . . . * .' - . '
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2 2 2 2 2 wk 2q 2P 2
P h~ gPh~ 2 k ghu

- : 2"f (f _ h + 2 u h~ gZ h2E),

w " Z (f + + (fw -' u 2r w Z£2r 2r u~ w 2 r
x

gmax 2 2 22
ff(f_ h2E) + P ,w£~w 2 r

u (118)

Note (118) represents m for both Case (1) and Case (2). This completes

the consideration of Condition (14). -2

Equation (104) evaluated at g= g is quadratic in f6 ' and

therefore has two solutions. One solution is f, = f. Since this solution

is real, and the coefficients of (104) are real, the other solution is also

real, and Condition (15) is true.

We now show that Condition (16) is true. We start by investigating

the asymptote equations, (105) and (106). Denote f in (105) by fd1" Then,

using (105)

2 2
hEt .1z (119)dl wu 2r

Substracting (119) from Relation (115) we get the result

f < f for all g EG h0eH E (120) 4

Denote f in (106) by fd2" Then using (106)

gogPh hZ

w Z 2rf d2 = 2p 2 (121)

g hEI: - (f - w-
~u z r

We now show that fd2 > f "  Comparing fd2 to f and using (121),

."

,'.'..' ..., .- . • . .. .. . . . - -. ., . . . ..... .'. -. ..... -.... ':. - . . .. -
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[ £2 + f (f- -2 P]

w r u z2r• fd2 f  =  u .

~d2 2(f gP h2-)

w 2

-: h2 + f(f - ).w 2r W 2r

fd2 u for all g G ' he E8H
(f_ _h 2 )

W~u 2 r

* since g g > g2 and h h > h2 for all g E8G and hEeeH. Therefore, since
2 2 e
- hZ < 0 and Relation (113) holds, f - f > 0. That is,
u zr 0 d2

f < fd2 for all g e- G  h eeH . (122)

Equation (121) evaluated at h9 = h has negative slope in the f0 -g plane

when g < 0 and EG as in (77a), and positive slope in the f -9 plane if

g > 0 and EG as in (77b). The graphs of (119) and (121) are a pair ofintersecting lines oriented as shown in Figure 15. From Figure 15 we can see

that f d2 > fdl for some g < g, when g < 0 or for some g > g when g > 0.

We will take the limit of J(uofe'g0,h) as f+ f+ at a value of g such

* that f > fd as shown in Figure 15. Examination of (99) shows that
d2 dl'*

lim J(uo,fgh ) = lim+ 2

f9+f+ 0f -I.f +g 2
f d2 e d2 gfg h 2A• (fo + AI(f A +

w r
u

22422 g2P2 h 2 2w 9 f 2g2P2 h 2  wk2q
• Y gP h E kWqg e f. agx

2+ + + A2 (123)

2w 4 r2 2w2Z2r 2w t 2r

L u u u

.°.-
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since the f term and the g h0 term (evaluated at h. h) cancel when

• f = fd2 Now since we are operating at fe's that are to the right of the
0 d2* 0

Vasymptotes given by (119) and (121), the first term of the denominator of

the right side of (123) is positive, where before it was negative, and the

..-. second term of the denominator is negative, where before it was positive.

Therefore, the denominator is negative, and inspection of (123) shows that

the numerator is also negative, so that J(uo,fejge h) is positive for values

of f close to fdl' Therefore,

lim+ J(u ,fge.,h)  + . (124)
f f+

O dl

Now consider the portions of the lines (119) and (121) that are right-most

which we have labeled fd in Figure 15. Since J(uopfeggeh) = + - on the line

segment corresponding to Equation (121), and J(uo,feg 0 ,h) is continuous for

f >  d' J(uo'f6Vgeh) = + - on the line segment corresponding to (119).

11 Therefore, -

lim+ J(uo,fegeh) = + oo for all g6 E (125)
fe fd

We now take the limit of J(uofe,g,h) as f;,- Equation (99) evaluated at

gg g and h - h is of the form:

'-" F + Ff + Ff 2

J(uof g,h) 1 2 2 (126)

-, (f + A)(f 0A + g ph2Zw u r

where

.'2 "2 . . . . 4. *. * . V * .
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4 2 222 2
22 4 2 2 g P h2Z w 2 2 2p2h 22

= P h E k q+ x g Ph E k2 + 2
4F2 22 2 x

2w X r 2w 2 r 2w k2r w R r
U U U U

(127a)
2

w k q 2 2
+ x (f - h Z 2

2w 2r
u 2 r

2 2 22 2 2

F (-(w k2q + g fhE(127b)
2 2 x WZ2 rw u 2r

u

F3  2 (127c)
2w Z2ru

F = gPhE (127d)
4 2

w rU,,

Taking the limit of J(uo feg,h) using (126),

F F
I F F2  F
2f F
f F

lim J(uo fe g,h) = 3rn 2p2 A

f-.Oo f 00C A g 2Ph 2
f0f (l + f(A +

fw -'r
u

Using the definition of F3 in (127c) and A in (101),

g P
222

' ") g~p h 21 :

2w k2r

lim J(u ,feg,h) = (128)
2 2(f -. h
wu 2 r

We now compare this value of J(uof ,g,h) with the maximin value given
f 0

by Equation (49):

..- ... . . . . .-
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g Ph E

2ow w2

u "r
2 P h2E

g 2pE(f - 2_
2 w u 2Z2r

k qP+2 2
w (f g  h2E
u w zr

Therefore,

J(u°'fgh) - J(u°'fe'g,h) > 0 (129)

But from Equation (125) we know

J(uof,g,h) - J(uo,feg,h) + 0 (130)
fe =f

-j 0 d

Therefore, since J(uo fe~g,h) is continuous over (fd,0), there exists some

point f f in the interval (fd,.) such that

J(uof,g,h) - J(uo,fxg,h) = 0

Therefore, Condition (16) holds.

Condition (16), supported by Condition (15), shows that the graph

(104) is not an ellipse since the graph of (104) would be required to cross

the asymptotes that exist due to Condition (12). Therefore, by Condition (Ii)

we know that the graph is a hyperbola. Therefore, Characteristic (la) is true.

-r- Conditions (13) and (14) are equivalent to Characteristic (Ib), and Conditions

(15) and (16), supported by Condition (12), are equivalent to Characteristic

(Ic). This completes the proof of the validity of Characteristics (la), (Ib)

and (Ic).

[ 1"
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3 Characteristics (1a), (Ib) and (Ic) enable us to construct the

largest set in X with 6 given in (78c). This set is shown in Figure 15 as

the area with the darker shading.

Next we investigate the contour in the ft h0 plane with g, = g.

This situation is equivalent to setting 8G as in (77c). Equation (102) then

reduces to a quadratic equation of the form:

S2 2
K1f + K2f + K3 gf h + K4 gh + K h + + 7 = 0 (131)

A typical graph of Equation (104) is shown in Figure 16. This graph exhibits

three basic characteristics we need in order to construct the largest set in

X that enjoys the saddle-point property. These characteristics are:

M(la) The graph of (131) is a hyperbola.

(lib) Curve C intersects the line f, = f at exactly one other pointh 0 = hmax ,

where h is always in a set e0 in X.max H

(tic) Curve C never intersects the line,h e = h, at a point other than the

maximin point, (f,g,h).

We see that, as in the previous case, the shaded area to the left of

Curve C is a convex set in the f0 - ha plane, and is the largest set that

*2 enjoys the saddle-point property since we have already shown that J(u,f0 ,gah a)

is decreasing at (f,g,h) in all directions into the area with darker shading.

However, this set is not rectangular and therefore is not in X.

Characteristics (IIa), (lib) and (Ilc) enable us to construct the

largest set in X that enjoys the saddle-point property. This set is shown

in Figure 16 with darker shading.

. . " . - , - . . * . - ..
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It remainT to show that Characteristics (Ila), (llb) and (Ic) are

valid. Necessary and sufficient conditions for (Ila), (lib) and (lIc) to be

true are:

* (Ill) The graph of Equation (131) is either a hyperbola or an ellipse.

(112) There exist two asymptotes of J(u , fe,g,h) in the fe h, plane.

They are a pair of intersecting lines.

- (113) There always exists exactly one other point besides (f,g,h) such that

J(uof,g,h ) J(uof,g,h).

(114) This point is always in some set 8H of the class, X, under consideration,

and is the point, (f,g,h max),represented in Figure 16.

(115) There always exists exactly one other point besides (f,g,h) such that

J(uo~feg,h) J(uo,f,g,h).

(116) This point is always on the opposite side of the asymptotes of

J(uo,feg,h ), and is the point (fxg,h) on Curve D in Figure 16.

Conditions (Ill), (112), (115) and (116) verify Characteristic (Ila).

Conditions (113) and (114) verify Characteristic (lIb), and Conditions (112),

.- (115) and (I16) verify Characteristic (Ic). We now show that Conditions (Ill)

through (116) are valid, and discuss the precise reason why they prove that

* Characteristics (Ila), (lIb) and (Ilc) are valid.

Since Equation (131) is quadratic in f and h., and since K1 # 0,

K5 # 0, K6 # 0 and K7 # 0, its graph is either a hyperbola or an ellipse.

Therefore, Condition (Ill) holds.

To prove Condition (112) we again investigate the denominator of

(99) by setting each factor equal to zero. From Equation (105) we see that

one asymptote is a vertical line in the f- he plane. From Equation (106)

'MI

K K K K. .,.W .
. !
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we see that with g, = g, its graph is a line in the fe - h, plane. Since the

slope of (106) is different than that of (105), these lines intersect at

some point. Since the numerator of (99) is nonzero for values of f and he

satisfying (105) and (106), Condition (112) holds.

Equation (131) evaluated at fe = f is quadratic in h,, and therefore,

has two solutions. One solution is he = h. Since this solution is real, and

the coefficients of (131) are real, the other solution is also real, and

Condition (113) indeed holds.

Equation (99) evaluated at f = f and g, g is of the form:

H + H h + Hh2

J(Uo, f,g,h6 ) = (132)... "(f + A)(fA + G4he)

where

g4P2h2 2Wx f2g2P2h 2Z2 + 22 2 p 2 h 2 2  g 2 
H =- + + (w k q)(f - w -1 .>i222 2 2  2(x2 2

2w 2 r 2w 2 r w 2 r u Z2 ru u Wk q (133a)

-'2 2 ji+ ( f  _ _ - 2 )2}w2  
2 2r

.'-q ggp 2h22

22

H22 ( kq+ 2223b

u u

2w Zr 2 W r

H H3  ~ 4 2 (133c) .
2w Z r

U

H w 2 r (133d)

4 2

We now show that Condition (114) holds. We consider the cases,

h< 0 corresponding to eH in (78a) and h> 0 corresponding to eH in (78b),

separately.

-7 ..
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Case (1): h<0 e f { he E [h,hb] h<hb<0} _j

We have shown that the minimax point, h, equals h in this case. Therefore,
b

to prove the validity of Condition (114) in this case, it is necessary to

show that there exists a h E (--,h) such that J(uofgh ) - J(u ,f,g,h).max max 0o

First, note that from Equation (88) and the subsequent discussion, we have

shown that J(uof,g,he) is increasing at (f,g,h). Now consider Equation (106),

evaluated at fe f and g.= g, which yields a value of he which we denote

by hd: 2 2
f(f _ h .

h =r (134)
d 2g PhZ

2.. w X2r -.

u

(f,g,hd) is the only point where J(uof,g,h0) is discontinuous in he. We show

that h < hd so that J(uo f,g,h) is continuous over (--,h). Note that

[Ph + f(f h- 2

2 w 2 ruh h d =2 (135)
g PhZ

w2r
u

Using Equation (113) and the fact that h < 0 we have the result

h - h < 0 (136)

d

Therefore, J(uo,f,g,h%) is continuous over (--,h). Now we take the limit

of J(uo,f,g,h8) as he . Using Equation (132),

H1

h- + H 2 + H3h
9  H3h

lir J(u ,fgh " li e = limhe he (f+A)(f+H 4 ) h (f + A)H4

1::,,:%-;% '7-. '. -:. '.- .- - . ',' . '" -.. . " -* ' -"" " -- - - -" "-"'---," • '-~----~--

h h (f + A) (-A+ .c
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Using Relation (115) and the definitions of H3 in (133c) and H4 in (133d) we

note

H3

(f+A) > 0

and
h e '

H4 > 0 for h < 0 and h E (--,h)
41

Therefore,

lim J(uo f~g~he) f + . (137)
he -

Since J(uof,g,h is increasing and continuous at (f,g,h), then

J(uo,f,g,h ) < J(uof,g,h) for some neighborhood (h - e,h), £> 0. Since

J(uo,f,g,h ) is continuous over (--,h), and has limit + - as h0 -- , there

exists some point h E(--,h) such that J(uo,f,g,hx) = J(uo,f,g,h).

Therefore, Condition (114) is true for h < 0 and with e0 given as in (78a).
H

Case (2): h>0 {he[h,h] 0 < h }
Hne ash b a b

We have shown that the maximin point, h, equals h in this case. Therefore,
a

to prove Condition (114) in this case, it is necessary to show that there

exists an h maxE(h,-) such that J(u ,f,g,h a) = J(uof,g,h). First, note

that from Equation (88) and the subsequent discussion, we have shown that

J(uo9 fsgjh e) is decreasing at (f,g,h). Equation (134) gives the only point,

hd, where J(u,f,g,h) is discontinuous. Using the expression for h - hd

given in Equation (135), the Relation (113), and the fact that h > 0, we

obtain the result:

IT " .
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h-hd>0

Therefore, J(u ,f,g,h0) is continuous over (h,-). Now we take the limit of
0

J(uofg, as Using Equation (132),

H IH1 + H + H h

he 2 3e6 H h
lrn J(u f,g the) ur L un= liO (f +A)4

. 0h hl (f + A)(fA + H4) he + 4

Therefore,

lim J(uf,g,h) = + (138)
he c

H3  he
since (f + A) > 0 and - > 0 for h > 0 and h E (h,w). Since J(uof~gjh is

decreasing and continuous at (f,g,h), then J(uo,f,gh) < J(u ,f,g,h) for~0

some neighborhood (h,h + e), e > 0. Since J(uo,f,gsh is continuous over

(h,-), and has limit + - as h , there exists some point h a(h,-) such
e max

that J(uo,f,g,hx) = J(uof,g,h). Therefore, Condition (114) holds for

h > 0 and 0H given by (78b).

We now compute h using Equation (132) with (133).
max

J(uo,f,g,h)max J(uo,f,g,h)

22
H + H h + H h H + H h + Hh 2

1 2 max 3 max 1 2 3
(f + A)(fA + Hh ) (f + A)(fA + H4 h)

4 max4

Cross-multiplying, and cancelling the term, f + A, we obtain

(H + H2 h + H3h
2 )(fA + H4 h) (H + H2 h + H3

h2 )(fA + H4 h

By expanding this and factoring out the already known factor, h -h,
.max

". .' .','::. . 3 .. *'' *-." -" .. . . . . . . . . . . .. . . . . ... o



84

(h h)[H fA(ha + h) + H3H4hh + H2fA - HIH4 ] = 0
max 3 max34ma 2 14

- Setting the second factor equal to zero, and solving for h
max'

-H fAh + H fA - HiH
h =- 3 2 1 1 4]

max H3 (fA + H4h)

Using the definitions of A in (101), and H1 through H4 in (133), and using a

few manipulations, we obtain the final result:

2 2
2 h2E g2phE f2 gw r 2P h2 2

.- 2- w k2q(f + + (f -

h =u
max 2 u 2 2-.- [f(f - I~-h__g ~ hg

W[ b2r + w£2r (139)
'" " U

Note that (139) represents h for both Case (1) and Case (2). This completes
max

the consideration of Condition (114).

Note that Conditions (115) and (116) are equivalent to Conditions

(15) and (16) which we have shown to be true. Therefore, Conditions (115)

and (116) hold.

As in the previous case, Condition (116), supported by Condition

(115), shows that the graph of (131) is not an ellipse since the graph of I
(131) would be required to cross the asymptotes that exist due to Condition

(112). Therefore, by Condition (1), we know that the graph is a hyperbola.

Therefore, Characteristic (IIa) is true. Conditions (113) and (114) are

equivalent to Characteristic (lIb), and Conditions (115) and (116), supported

by Condition (112), are equivalent to Characteristic (IIc). This completes

the proof of the validity of Characteristics (lla), (lib) and (lIc).

V'. "-- - .. ,
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Characteristics (Ila), (lIb) and (lIc) enable us to construct the

largest set in X with G given in (77c). This set is shown in Figure 16 as

- the area with the darker shading.

Finally, we investigate the contour in the ge - he plane with

f = f. This situation is equivalent to taking eF as in (76c). Equation

" (102) then reduces to a quadratic equation of the form:

-2 2 2K6 g8 + (K3 f + K4 )gh 8 + K5h +Kf + Kf + K =0 . (140)

- A typical graph of Equation (140) is shown in Figure 17. This graph exhibits

three basic characteristics we need in order to construct the largest set in

* X that enjoys the saddle-point property. These characteristics are:

(lila) The graph of (140) is a hyperbola.

(lllb) Curve E intersects the line, h0 = hat exactly one other point

96 = gmax where gmax is always in a set G in X.

(IIIc) Curve E intersects the line,g, = gat exactly one other point

U h6 = h max mawhere h mxis always in a set E)Hin X.

The shaded area to the left of Curve E is a convex set in the

" g6 - he plane, and is the largest set that enjoys the saddle-point property,

since we have already shown that J(uo,fe,g8 ,h) is decreasing at (f,g,h) in

all directions into the area with darker shading. However, this set is not

rectangular and therefore is not in X.

Characteristics (lia), (IlIb) and (IlIc) enable us to construct

the largest set in x that enjoys the saddle-point property. This set is

shown in Figure 17 with darker shading.

. . .- . . • . . . . * . . . * . . -. • ° . . • - -
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Figure 17. Contour of J(f,g e9h ) J(f,g,h) in the h 9 plane.
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It remains to show that Characteristics (lIla), (lllb) and (IlIc)

are valid. Necessary and sufficient conditions for (lia), (IlIb) and (IlIc)

to be true are:

*(III1) The graph of (140) is either a hyperbola or an ellipse.

(1112) The graph of (140) has center at the origin.

(III')) There always exists exactly one other point besides (f,g,h) such that

-m J(uo,f,geh) = J(u ,f,g,h).
0 0

(1114) This point is always in some set 0 of the class, X, under
G

consideration. This is point (f,g xh) as represented in Figure 17.gmax

(1115) There always exists exactly one other point besides (f,g,h) such

that J(uos ) = J(uogf,g,h)"

. (1116) This point is always in some set )H of the class, X, under considera-|H
tion. This is point (f,g,hm) as represented in Figure 17.

max

Conditions (III1) through (1116) verify Characteristic (lia).

Conditions (1113) and (1114) verify Characteristic (IIIb), and Conditions

(1115) and (1116) verify Characteristic (IlIc). We now show that Conditions

(III1) through (1116) are valid, and discuss the precise reasons why they

prove that Characteristics (lia), (IlIb) and (IlIc) are valid.

Since Equation (140) is quadratic in g0 and he, and since

K1f 2 + K2f + K7 0 0, K5 # 0 and K6 0 0, its graph is either a hyperbola or a

*ellipse. Therefore, Condition (III1) is true.

Since there are no terms in (140) that are linear in g,, and there

are no terms that are linear in h, the graph of Equation (140) has center

at the origin. Therefore, Condition (1112) is true.

2"..'7
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Conditions (1113) and (1114) are equivalent to Conditions (13) and

(14) which are known to be true. Therefore, Conditions (1113) and (1114)

are true.

Conditions (1115) and (1116) are equivalent to Conditions (113)

and (114), which are known to be true. Therefore, Conditions (1115) and

(1116) are true.

Conditions (1113) through (1116) establish the existence of points

(f,gmax,h) and (f,g,hmax ) as solutions of (140). We also know that (f,g,h)

solves (140). Since, by Condition (1112), we know the graph has center at

the origin, the graph of (140) cannot be an ellipse since we cannot find an

ellipse centered at the origin that intersects these three points, as we can

easily see from Figure 17. Therefore, by Condition (III1), the graph of

(140) is a hyperbola and Characteristic (Ilia) is true. Conditions (1113)

and (1114) are equivalent to Characteristic (IIIb), and Conditions (1115) and

(1116) are equivalent to Characteristic (IlIc). This completes the proof of

Characteristics (Ilia), (IlIb) and (IlIc).

Characteristics (lia), (IlIb) and (IIc) enable us to construct

. the largest set in X with EF given in (76c). This set is shown as the area

in Figure 17 with the darker shading.

We can combine the results that were arrived at through the study

of the contours in the f, - g, plane, the f. - h, plane and the g, - h6

plane at values h0 = h, g,= g and t= f, respectively, to find the largest

set in the class, X, when all three parameters are unknown. All parameter

sets that are subsets of this set enjoy the saddle-point property. The result

is summarized in the following theorem.
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Theorem 3: Consider a subclass $ of the class, Xs sucb that:

FS GS HS

and EFS' EGS" 8HS are each one of the following, respectively:

e - {f E [f ,f] - < f < f < 0} (141a)FS e a9 a-

or 6 {E fafI < f} (141b)o FS {fS [a~f 0 a-

or 0 ={f =f fER f # 0} (141c)
FS

- OG={g 6 [ga,g] gmax < g < g < 0} (142a)

or GS {gOE [ggb] 0 < g < gb < gmax (142b)

-- or E = {go = g geR g # 0) (142c)GSS
E) = {h e [hh] h < h <h < 0} (143a)
HS aS max - a-

or 0HS =  9hG [h'hb) 0 < h =< hLb bh max' (143b)

or EHS =th = h hE IR h t 0 (143c)

where gmax is given by Equation (118), and h is given by (139). The
max

r following results hold:

1) (f,g,h) is the solution to the maximin problem, (9), for scalar systems of

the form described by (3), (4) and (5) for OE$.

2) The minimax problem,(8), and the maximin problem, (9), for scalar systems

-" of the form described by (3), (4) and (5) have the same solution if and only

- if 0 belongs to the class,$, described above.

This theorem describes all the possible parameter sets in the class

X such that a saddle point exists at the maximin solution,(f,g,h). However,

% -.- t± -~ !:......Iit
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this theorem does not say that there is no minimax solution for sets in X that

are not in , but only that the minimax solutions for these sets do not

correspond to the maximin solutions,

This completes our solution to the minimax problem for scalar

systems by the method of solving the maximin solution for the same system. We

now consider the examples of the previous section, and compare the performance

of the minimax controller to that of the least sensitive controller.

4.4. Examples

The following scalar system was considered in Section 3, which we

state here using the present notation for the uncertain parameters:

dxt  f xtdt + g t dt + dwt  (32a)

dyt =xtdt + dv (32b)

(dw 0rd

0) 2 E E) dtE (0 E
-dv t)

J(uo'fOg 0 ,l) = E [lim f (x2 + u2)dt] (33)
w,v T-* 0

Here f e and g =6 In Example 4.1, g6 is known and equal to 1, and

f is unknown. In Example 4.2, fe = 1 and g6 is unknown.

For Example 4.1, f0 unknown and g, = 1, we introduced a uniform

distribution on the following sets in Example 3.1 of Chapter 3:
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I lF = foE 0o.9 ,1ol]1 (144a)

0 F2 = (f e [0.7,1.31} (144b)

E = {f E [0.5,1o51} (144c)

F3 e

For Example 4.2, fe - 1 and g8 unknown, we introduced a uniform

distribution on the following sets in Example 3.2 of Chapter 3:

E) GI ={ [0.9,1.131 (145a)

EG =G { [0.7,1.31} (145b)

EG ={gE [0.5,1.51} (145c)
G3 a

Equations (47) represent the controller corresponding to the maximin

solution, (f,g), which is yet to be determined. For these examples Equations

(47) reduce to:

u= - gP x (146a)o t

dx t = (f - g P) dt + Z(dy t - x dt) (146b)

2fP - g2p2 + 1 = 0 (146c)

2fH - Z2 + 1 = 0 (146d)

Consider Example 4.1 with g, g 1, and the parameter sets in

(144). We can use the Fr4chet differentials of Theorem 2 to find the maximin

solution for each of these sets. The result for each set is stated in

Part (1) of Theorem 3. The maximin solutions are:

e F f =lI. (14
0 ~Fl f 11

eF2 : f = 1.3 (1-

- F3 f = 1,5
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From Theorem 3, Part (2), we know the sets E ) and E) all
Fl' F2 F3

enjoy the saddle-point property, and thus Solutions (147) are minimax

solutions, and the corresponding controllers, (146), are minimax controllers.

We wish to investigate the performance of these minimax controllers

as the parameter, f,, varies in the sets F F2 and 8F3 To facilitate
e Fl' F2 F3

this, we define J(uolfe,ge,l) in Equation (99) by the notation JMM(f6 ,g0 ).

We use Equation (99) to calculate J for each example. Then the performance

*.. measure used in Chapter 3 is used, that is, a graph of J - J as f or g8
•OPT _

varies in their respective sets.

To evaluate Equation (99) for a particular value of f, Equations -.

(146c) and (146d) must be solved to find the corresponding P and E:

P = f + f + (148a)

S= f + f 2 + 1 (148b)

Therefore, for f = 1.1, and e as in (144a),

P = 2.5866

Z = 2.5866

Then, Equation (99) reduces to:

22.3814 2  9 822.3814 f% 95.4886 f8 + 206.5586
"-J JM(f)=. (149)

M e (4.1732 - f )(6.6905 - 4.1732 f0 )

A plot of JM(f0 ) - JoP(f 0 ) over [0.9,1.1] is shown in Figure 18.

For f 1.3, and eF2 in (144b),

P = 2.9401

E= 2.9401

MAIM

• . ..... .. .... .... ........ ...... ... .. ............. . + ... .,.:...:.....<+ -
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Then, Equation (99) reduces to:

237.3610 f8 - 173.4110 f + 412.4891

MMe(fe )  (4.5802 - f )(8,6442 - 4.5802 f (150)

A plot of - JoPT~f8 over [0.7,1.31 is shown in Figure 19.

For f 1.5,

P - 3.3028

E - 3.3028

Then Equation (99) reduces to:

59.4976 f2 - 306.3235 f + 786.5119
0 0 (151)

JMM(fO) f(5.1056 - f )(10.9085 5.1056 f

A plot of JMM(fe) - JOPT(f) over [0.5,1.51 is shown in Figure 20.

Figures 18, 19 and 20 show the relative cost of the minimax

controllers. Also, these figures show the relative cost of the least

sensitive controllers we previously displayed in Figures 1, 2 and 3. From

these plots, we can compare the performance of the minimax controllers with

the performance of the least sensitive controllers. Several observations can

be made.

1) Recall that the minimax controllers are optimal at the worst-case parameter

value, whereas the least sensitive controllers are not optimal at any parameter

value in the intervals under consideration.

2) The least sensitive controllers exhibit superior performance over a wider

* range of parameter values than the minimax controllers exhibit. This property

can be quantified as the percentage of full range that a particular controller

exhibits superior performance.
%2,

Le

€ • ., .•.- - . • - .-.. . .° % . ' - . .- .. •-. " ° ". ..-. . ,, ° - - . . ' I ..-A
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J(e) - JOPT(el)

, 1.25-- -

8.75
A.

'nimax

. 2

''-

8..25-

U"

".-' 8.98 8.95 !.89 1.85 1.18

Figure 18. JMM JOPT and JLS - JOPT vs.0 1 , e6 2 =i, 8 1 [0.9,1.1].
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.10 1 ) - JOPT (el1)

12.5- - ___ ______

minim"x
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Sensitive

2.5-

e.6
**0.4 0.6 0.8 1.0 1.2 1.4 .

Figure 20. 1 1OP and iL - OP vs. 91, e2  1, 9E e[0.5,1.51.

mm OP LS OT 2.
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eF % range (least sensitive) % range (minimax)

[0.9,1.1] 77.5% 22.5%
[0.7.1.3] 82.3% 17.7%
[0.5,1.5] 84.2% 15.8%

From these figures we can see that the least sensitive controllers exhibit

superior performance for an increasing relative range of parameter values

as less parameter sensitivity is desired.

3) The relative difference between the maximum relative cost for the

minimax controllers and the least sensitive controllers decreases as

less sensitivity is desired. The relative maxima as a percentage of

JMM (max) - JOPT(max) are:

e F % difference

[0.9,1.1] 62.5%
[0.7,1.3] 40.9%
[0.5,1.5] 17.0%

5Note that, as will be seen in the second example, this trend will continue.
As we widen the range of parameter values, the maximum relative cost of

the minimax controller is actually less than the maximum relative cost of

the least sensitive controller.

These observations are useful when considering which design is

best for a particular application. However, discussion of design considera-

tions is postponed until after the investigation of Example 4.2.

Now consider Example 4.2 with f, M f - 1 and the parameter sets

• in (145). We can use the Frdchet differentials of Theorem 2 to find the

maximin solution for each of these sets. The result for each set is stated

in Part (1) of Theorem 3. The maximin solutions are

E
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S g= 0.9 (152a)

.0G2: g -0.7 (152b)

8G3 : g- 0.5 . (152c)

We now calculate gmax for each of these sets using Equation (118).

To evaluate (118) we need the corresponding P and E for each g in (152).

From Equations (146c) and (146d) we can evaluate P and E:

P 1+ 2 (153a)

E I /2(153b,)

Using Equations (118) to evaluate g x, the results are:

G : g 0.9 gma 9.5726
Gl mx

Sg = 0.7 gma = 11.3463

.G3 : g 0.5 gmax 14.8239

Therefore, by Theorem 3, Part (2), the sets EGI 0 and E) all enjoy the

Gl' G2 *

saddle-point property, and thus Solutions (152) are minimax solutions, and

the corresponding controllers, (146), are the minimax controllers.

It is interesting to note that, for this example, we enjoy a

rather liberal choice of parameter sets in the sense that as the deviation

from the mean increases, the upper bound on the set also increases, so

that we are limited by the lower bound, g, = 0, rather than the upper bound,

g6 = gmax" Therefore, for this example, all the desired deviations from the

mean, up to 100%, have minimax controllers that we can design using the

method described in this section.
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To evaluate Jmm(ge), Equation (99) is used with P and Z for each

g given by Equations (153a) and (153b).

For g 0.9, and E)l in (145a),

P = 2.8955

E = 2.4142

Then Equation (99) reduces to:

19.7902 2 + 127.6514 g 29.6352

2.7596 (3.7596 - 6.2913 g) 14

A plot of Jmm(ge) - J p(g) over [0.9,1.1] is shown in Figure 21.

For g 0.7, and "G in (145b),

P =4.5320

Z =2.4142

Then Equation (99) reduces to:

29.3287 2 + 224.6223 g6  43.1607
Jmm(ge) = 2.6349 (3.6349 - 7.6588 g 8) (155)

A plot of Jmm(ge) - J~(g ) over [0.7,1.3] is shown in Figure 22.

For g 0.5, and E)G in (145c),

P =8.4721

Z 2.4142

Then Equation (99) reduces to:
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52.2926 g2 + 539.8936 g0 - 75.6519J(g) = (156)
2.5322 (3.5322 - 10.2267 g6)

A plot of MM(g6)- JoPT(g 0 ) over [0.5,1.51 is shown in Figure 23.

Figures 21, 22 and 23 show the relative cost of the minimax

controllers. Also these figures show the relative cost of the least sensitive

controllers that are displayed in Figures 8, 9 and 10. From these plots,.

similar observations can be made as in the previous example.

1) Again, the minimax controllers are optimal at the worst-case parameter

value, and the least sensitive controllers are not optimal for any value.

2) The least sensitive controllers exhibit superior performance over a

wider range of parameter values. The percent of full range that a particular

controller exhibits superior performance is shown below:

EG % range (least sensitive) % range (minimax)

[0.9,1.1] 78.55% 21.45%
[0.7,1.3] 85.93% 14.07%
[0.5,1.5] 90.91% 9.09%

Again the least sensitive controllers exhibit superior performance for an

increasing percentage of the full range of parameter values as less parameter

"-.' -sensitivity is desired.

3) The relative difference between the maximum relative cost for the minimax

controllers and the least sensitive controllers decreases as less parameter

* .i sensitivity is desired. The relative maxima as a percentage of

J (max) - s(max) are:

. , , . - .. . .. .. . . " . - . . , . . . , . . . .
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J(6 2- JOPT(e 2 )

Minimax
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Figure 22. J OPT LS J OPT vs.92, 9 1 -i, 62 E [0.7,1.3].
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pJ(6 2  - OPT (92)

20--
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Figure 23. J m- JOP and J LS-OTJ s92 11
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E) % difference

[0.911.1] 57.63%
[0.7,1.3] 3.39%
[0.5,1.51 - 102.86%

Here the results are much more dramatic than in the previous example. For

the set, [0.5,1.5],the maximum relative cost for the least sensitive controller

is over 100% higher than the maximum relative cost of the minimax controller.

One cause for the difference in the behavior of the relative

maxima of the two examples may be seen by referring back to the plots of

J OTfor the two examples given in Figures 4 and 11. As can be seen from

these plots, the least sensitive controller must compensate for much higher

worst-case costs when g, e ~ is unknown. Also these worst-case costs increase

more rapidly as the parameter set is widened for the g0 e 2 case.

This completes our observations for the two examples. These

observations are useful when one has to make a choice between the two designs

for a particular application. From Observations (2) and (3) of the two

examples, one may detect a conflict in objectives. On the one hand, the

least sensitive controllers exhibit superior performance over the wider range

of parameter values. On the other hand, the least sensitive controllers can

exhibit very poor performance over the worst-case values of parameters when

the variance is substantial. If this worst-case performance is intolerable,

one may prefer the minimax controllers over the least sensitive controllers.

Therefore, either controller design may be preferable over the other, depending

on the application.

.17
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4.5. Conclusions

In conclusion, this section has dealt with the design of minimax

controllers that minimize the worst-case cost. An equivalence between the

solution of the minimax problem, (8), and the solution of the maximin problem,

(9), has been sought. Problem (9) was shown to have a solution which could

be found by setting the Fr~chet differentials in Theorem 2 nonpositive.

Theorem 2 also gave the requirements for the equivalence of the minimax

problem,(8), and the maximin problem,(9). We noted that the method of proof

of the equivalence of (8) and (9) when the uncertainties were in the noise

covariance given by Looze, Poor, et al. [7] could not be used here since

that proof relied on the creation of an error model that could not be formed

in this case because the uncertainties were in the dynamics of the state

model. Indeed we found that in the scalar case there were examples where

(3) and (9) were not equivalent.

The scalar problem was then considered. The maximin solutions for

Ia class of sets, X, was found by setting the Frdchet differentials of Theorem 2

nonpositive. We found the largest convex set in J3 such that (8) and (9) are

equivalent by examining the level surface of (99) at the maximin solution.

This surface is a half-hyperboloid defined by (102). By examining the

contours of (102) in the f - go plane, the f- h0 plane and the g h

plane at values of h, = h, g8 
= g and f = f, respectively, we were able to

find all the sets in x such that (8) and (9) were equivalent. This result

was sumnarized in Theorem 3.

i:
. .. . .. . . . . . . . . . . .
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Finally the examples of Chapter 2 were considered, and Theorem 3

was used to show that the solutions to (8) and (9) were equivalent in these

examples. The performance of the minimax controllers was compared with

the performance of the least sensitive controllers of Chapter 2. It was

seen that depending on the design objectives either controller may be

preferable. Specifically, the least sensitive controllers were seen to

exhibit superior performance over a wider range of parameter values, but

the minimax controllers had lower maximum cost when the relative range of

parameter values was substantial.

.t.

4.>V'

z_ l1L
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CHAPTER 5

A TWO-DIMENSIONAL SYSTEM

In this chapter, we consider the design of least sensitive and

minimax controllers for a two-dimensional system with different uncertainties.

.. These examples serve to present some important ideas about the design

procedures and considerations for multivariable systems that were not

illustrated in the previous examples.

The design of least sensitive controllers is considered first. The

design procedure for these examples is the same as that of Chapter 3. However,

with multivariable systems, the designer has the option of reducing the order

of the controller dynamics, thus perhaps saving on some fixed costs. Therefore,

the analysis of these examples will concentrate on the relative performance of

the reduced-order controllers and the full-order controllers.

Next, the design of minimax controllers is considered. We saw in

Chapter 4 that the design procedure for minimax controllers for multivariable

systems in a general sense was not feasible, particularly in being able to

show the equivalence of the minimax solution to the maximin solution through

verification of the saddle-point condition of Theorem 1, Chapter 4. However,

• -this chapter shows how the design may be carried out numerically for a specific

example. First, the maximin controller can be found using a plot of the

optimal cost for each value of the unknown parameter. Once the maximin

solution is obtained, we can verify the saddle-point condition by investigating

a plot of the cost associated with the use of the maximin controller for

each value of the unknown parameter.
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Finally performances of the minimax and the least sensitive

.9!  controllers are compared under various circumstances, and the considerations

one should make in choosing a particular design are discussed.

5.1. Formulation of Examples

We consider a two-dimensional system in canonical form with four

possible unknown parameters:

dxI  0 i 0\ dwI

) dt + udt + (157a)
2dx 21 2 x 3  0 1 dw2

dy - (04 0) x) dt + dv (157b)

The nominal parameter vector is (01 02 03 04) = ( -1 1 ). We consider

four examples, each with only one parameter unknown. In each example, we

consider intervals with end points that are 10%, 30% and 50%, off the

nominal value.

Example 5.1: 0 unknown, 6 1, 3  1, 4  1
1 wn 2 =-103 =104 1

Example 5.2: 1I 1, 0 unknown, 0 , 1, a = 1
012 on 03 104 1

Example 5.3: 01 = 1, 02 - 1, 03 unknown, 04 = 1

Example 5.4: 01 1, 1. 2 - - 1, 03 = 1, e4 unknown

7.- 7o.7-
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5.2. Least Sensitive Controllers

The gradient algorithm developed in Chapter 3 and given in the

" Appendix can be used to find first and second-order least sensitive

controllers for these examples. However, an adequate starting point must be

fo'_"d in order to use the algorithm.

-. As a starting point for second-order controllers, we use the optimal

p controller for the nominal system in the block diagonal coordinates, (10). The

nominal system is:

( ) ) + udt + (158a)

:::2% x2  2 %-

dy (1 0) () dt + dv (158b)

"- The optimal controller for this system is [31:

u=- (0 l)Px (159)

where 1): (0 O) r(I )d (160)
di ) - Q ) - ) idt + )dy (160)

S-1 0 1 0 "0

P1 P2'

.*. and P = satisfies:
P2 P3)

( 1) ( P2) + P P2) ( ) 2 0)

1 P P P 1 01 P

P1 P2) )(0 1 i 0 (161)
"P2 P3 I P2 P3)
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and Z satisfies: 7

1 2 ) + (F E2  1 (

1-) 1 (1 0) 1= 0 •(162)

z 2  E 3  0 E2  E 3 ).

Equation (161) reduces to three equations:

I2

2P 2 + 1 P =0 (163a)

P3 +P 1 -P 2 - PP = 0 (163b)

2P - 2P + 1 - P 2 0 (163c)
2 3 3=0-

The positive definite solution to Equations (163) is

(4.6954 2.4142'\

-. 
2.4142 1.6131) (164)

Equation (162) reduces to three equations:

E 2 +1-E1 0 (165a)

E + z1 - z2 - 2 = 0 (165b)

2=
2E2 - 3Z+ - E 0 .(165c)

The positive definite solution to Equations (165) is

/ 1.732 1
1" • (166)

#.--4

'- ..... . . . - - - - - - - - - - - - -



With P and Z given in (164) and (166), Equations (159) and (160) reduce to

u (2.4142 1.6131)i (167)

d -. 7 1 + dy (168)(-.4142 -2.6131)d (

In the block diagonal coordinates, (10), the optimal controller is of the

form:

u - (0 1)z (169)

dz i  zdt + dy (170)

";p1 P2/ P

We match the Y(s) to U(s) transfer functions of these two controllers. For

controllers represented by (167) and (168),

( s + 1.7321 -1 721
U(s) = - (2.4142 1.6131) 2
Y(s) 2.4142 s + 2.6131 1

-(2.4142 1.6131) (s + 2.6131 1 > (1.7321)s

- 2.4142 s + 1.7321 1
s + 4.3452 s + 6.9403

U(s) - (5.7946 s + 9.3897)s (171)"-(S 2( 7 )
Y(s) s + 4.3452 s + 6.9403

For controllers represented by (169) and (170),

66..

~~.................. ........................... ,.......: . :;;:::i::
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U(s) / P
Y (S) (0 1) K s-1 2  (p)

( - 2 1 -

=(0 1) Sp1 2 Sk P3)
P S

..- s -P2 s  - Pl '

U(s) (p 4 s + plp3 )s
Y(s) 2 (172)

- P p1

Comparison of (171) and (172) gives the desired starting point for the

gradient algorithm:

pl M - 6.9403

p 2 = - 4.3452 (173)

P3 = 1.3529

P4 = -5.7947

To find a starting point for first-order controllers, we find the Y(s) to U(s)

transfer function for the first-order controller and attempt to match this

transfer function to (172). The first-order controller is Wi

u z (174)

dz = Plzdt + P2 dY . (175)

Then,

,'-,..-U(s) 
pf P2 s.1 6

(176)
Y(s) s %.

To facilitate a comparison between (176) and (172), we attempt to cancel the

zero in (172)

L ... .......
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U ( s ) P 4 S( + -P 4 4-S

Y(s) 2

U U(s) P4s (177)""Y Cs) Pp• ( 1 7 7) "

Pl.lP3 (P2 L,...: s - 2 +  P 4 3)P P3-'

i:- We compare (176) to (177) and set 
-

P4  i - 4.1743

= p 2 + P - 5.7947 (178)
4

where we have neglected the remainder in the denominator of Equation (177).

However, this remainder is not negligible, so we seek an improvement in this

starting point. We can use the gradient algorithm to make this improvement

by noting that choosing a degenerate single point distribution corresponds

to the case where the parameter value is known. Therefore, by using (178)

as a starting point for the gradient algorithm applied to the nominal system,

a more exact starting point is found. This point is

P - 5.9235

P= -8.3097 (179)
2

Note that these are the control parameters corresponding to the optimal

first-order controller for the nominal system. We use these parameters as

the starting point for determining first-order controllers using the gradient

algorithm.
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We now consider the design and analysis of least sensitive

controllers f or Examples 5.1 through 5.4, for various intervals spread

evenly about the nominal values. As in Chapter 3, uniform distributions

are induced on these intervals. The same type of approximating distributions

is found using Equations (34), (35a), (39) and (41) of Chapter 3, choosing

N= 3. We can use this low choice of N since the corresponding controllers

have similar performances as controllers designed for N large have.

Therefore, we can save on computations without losing much information

pertinent to our analysis.

Again we choose as a performance measure a plot of the difference

between the cost, JL(6,incurred by the least sensitive controller, and

the optimal cost, J OPT (e), for each value of the parameter over the range

of uncertainty. This is a plot of the additional cost incurred by the least

sensitive controller over the minimum cost if the parameter were known.

Now consider Example 5.1:

9 unknown, 0 2 = 1, e 11
1 03 041

with the uniform distribution induced on the 10%, 30% and 50% spreads:

0 U[0.911.l]

O U[0.7,1.3] (180)

The gradient algorithm is used to calculate first and second-order least

sensitive controllers for these distributions, along with the corresponding

average cost. The results are:
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U Distribution Controller Order Pp 2  P3  P4 JAVG

U[0.9,1.1] 1 -5.9266 -8.4104 28.6159
2 -7.2769 -4.3981 1.3724 -5.8667 27.2015

U[0.7,1.3] 1 -5.9822 -9.100 31.4066
2 -9.1375 -4.7185 1.4852 -6.3612 30.0375

U[0.5,1.5] 1 -6.1337 -10.1914 36.1568
2 -11.3105 -5.1174 1.6304 -7.1322 34.7152

The plots of JLS(0) - JOPT(e) for the first and second-order

controllers are shown in Figures 24, 25 and 26 for each distribution. Several

observations can be made from these curves.

1) The performance of the second-order controllers exhibits most of the

properties observed in Chapter 3, which are related to the basic shape of the

performance curve. Since the first-order controllers have the same basic

- shape, they also exhibit these properties. These properties include the fact

that less performance is sacrificed at near nominal values than at off nominal

. values, and that the controllers are biased towards parameter values associated

*with higher costs.

2) The savings in using a second-order controller over a first-order controller

relative to the total average cost of the first-order controller is significant,

but relatively low. We can quantify this by looking at the percent decrease

, in the average cost of the second-order controllers relative to the cost of

- the first-order controllers.

Distribution Decrease in JAVG

U[0.9,1.1] 5.2%
U[0.7,1.3] 4.6%
U[0.5,1.5] 4.2%

3) Since we are obligated to incur at least the optimal cost of each value of

-." the parameter, there is a maximum amount one can save over the average cost of

p, ,, -, ................, ....... ........... , ... ..-. .. --. .,.. ...... ..- , .. , i
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~ 1) - OPT 1l)

ls Ode
__a__

1@\

2nd- Order

Sensitive

Figure 24. J LS J P vs. 1 for 1st and 2nd-order controllers,

& U[.9,1.11; and J, JOTv-e' [0.9,1.].
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i J~~el JOPT 1)-'

12.5-

Mnmax

7.5

ist-Order
Least

-ti-
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8.7 0.8 0.9 1.8 1.1 1.2 1.3
Figure 25. J - vs. for 1st and 2nd-order controllers,

25 LS - OPT vs
1- U[0.7,1.3]; and JMM- JOPT vs. 6lE [0.7,1.3].

OPT v.9 1 , (0.71.31

pL
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J(e1 ) -OPT (a1)

Minimax

Least

Leas

Figure 26. J -Orde o r nd2dore otrles

e1 U[0.5,1.51; and -M JOPT vsA91, ;jE [0.5,1.51.
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the first-order controllers. Figures 24, 25 and 26 show that large percentages

of the maximum possible savings are realized by the second-order controllers.

* For each distribution, we find the percentage of the maximum possible savings

over the first-order costs that the second-order controllers realize.

Distribution Percent of Maximum Savings

U[0.9,1.1] 81.9%
U[0.7,1.3] 34.6%
U[0.5,1.5] 21.1%

Note that this percentage decreases as the uncertainty increases so that the

two controllers are more comparable as less sensitivity is desired.

4) From Figures 24, 25 and 26 we can see that the difference between the

first and second-order controllers is greater for near nominal values of the

U parameter and less for off nominal values. Therefore, more performance is

* sacrificed at near nominal values than at off nominal values when the first-

order controllers are used instead of second-order controllers.

These observations show that the first-order controllers have fairly

good performance relative to the total cost incurred by each type of controller,

* but that the second-order controllers can realile a large amount of the total -

possible improvement in performance. Also, the first and second-order

controllers become more comparable as the range of uncertainty increases.

We will discuss what these observations mean when one is considering a specific

design after the remaining examples are analyzed.

C:Before proceeding to the next example, note that Observations (1)

and (4) above will generally hold for the remaining examples. Therefore, we

will concentrate on observations similar to (2) and (3) in the discussions of

the remaining examples.
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Next, consider Example 5.2:

"1= 1, a2 unknown, 3= 1, 4= 1

with the uniform distribution indiced on 10%, 30% and 50% spreads:

"- 2 U[-l.l,-0.91
02

o2 - U[-1.3,-0.71 (181)

S02 - U[-1.5,-0.51

The gradient algorithm is used to calculate first and second-order least

sensitive controllers for these distributions, along with the corresponding

average cost. The results are:

Distribution Controller Order p1  P2  P3  P4  JAVG

U[-1.1,-0.9] 1 -5.9628 -8.3610 28.3333
2 -6.9373 -4.3413 1.3521 -5.8081 26.8616

U[-1.3,-0.7] 1 -6.2947 -8.7943 29.2138
2 -6.9181 -4.3118 1.3452 -5.9166 27.4057

U[-1.5,-0.51 1 -7.0611 -9.7934 31.2339
2 -6.9046 -4.2621 1.3048 -6.1376 28.5435

The plots of JL(6) - oP(e) for first and second-order controllers

.4 are shown in Figures 27, 28 and 29 for each distribution. Two similar

• .- observations to those of Example 5.1 will be made here.

1) We again calculate the decrease in average cost of the second-order

controllers relative to the average cost of the first-order controllers.

Distribution Decrease in J~AVG

U[-1.I,-0.9] 5.2%
U(-1.3,-0.71 8.1%
U[-1.5,-0.5] 8.6%

:-:-U
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2.5-

2.8-

1st-Order
Least
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Figure 27. 1 - J vs.9 for 1st and 2nd-order controllers,LS OPT 2
9 2 -U[-1.1,-0.9]; and J Jm P vs. 9 92
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(2) - OPT6 2)

1st- Order
Leas t
Sensitive

.62

Figur OPT1 vs.62 for 1st and 2nd-order controllers,
a U[-1.3-.71; and 3M -3P vs. 62 62E[13-.
2 ' 'N P '2 I,7
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U (e2) - OPT (62)

26-

16-

1st-Order
LeastA Sensitive

-16 1. -. 2 -1.0 68 -. -6.4
Figure 29. 1 LS -

3OPT vs.6 for 1st and 2nd-order controllers,

a ~U[-1.5,-0.51; and J 3 vs.e2 9 f-1.5,-0.51.
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Note that as in the previous example, the savings are significant, but

relatively low.

2) As in the previous example we calculate the percentage of the maximum

savings over the first-order controller that the second-order controller

realizes.

Distribution Percentage of Maximum Savings

U[-I.1,-0.9] 98.3%
U[-1.3,-0.71 88.7%
U[-1.5,-0.51 80.4%

Note that these results are much more dramatic than those in Example 5.1,

with only a slight decrease in savings as more parameter insensitivity is

desired.

Thus our observations in this example are similar to Example 5.1

except that the improvement of second-order controllers in this example is

generally greater. This greater improvement may be a result of the fact that

control effort for 02 has more effect on the stable subspace of the states

and thus the performance is more responsive to the greater control effort of

the second-order controllers.

Next, we consider Example 5.3:

01 1, a2 = - 1, e 3 unknown, 04 = 1

with the uniform distribution induced on 10%, 30% and 50% spreads:

"" " -3  U[0.9,1.1]

O 3 U[0.7,1.3] (182)
3

a3 U[0.5,1.5] -

3-A

, ', ='",." '.' .. i " .. " - "" " "" .. . . ". " """ "" " • " " " ' '
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The gradient algorithm is used to calculate first and second-order least

sensitive controllers for these distributions, along with the corresponding

average cost. The results are:

Distribution Controller Order pl P2  P3  P4  JAVG

U[0.9,1.1] 1 -5.9157 -8.4212 28.7810
2 -7.5486 -4.4366 1,3792 -5.8814 22.4062

U[0.7,1.3] 1 -5.9351 -9.3592 33.5228
2 -12.2170 -5.2161 1.5533 -6.6179 32.4224

U[0.5,1.5] 1 -6.2351 -11.6023 45.3055
2 -22.2779 -6.9242 1.8494 -8.3323 44.3532

The plots of JLS(0 ) - JoPT(8 ) for first and second-order controllers

are shown in Figures 30, 31 and 32 for each distribution. Again we make the

same types of observations.

1) We calculate the decrease in average cost of the second-order controllers

relative to the average cost of the first-order controllers.

Distribution Decrease in JAVG

U[0.9,1.1] 4.8%
U[0.7,1.31 3.3%
U[0.5,1.5] 2.1%

Again, the savings is significant, but relatively low.

2) We calculate the percentage of the maximum possible savings over the

first-order controllers that the second-order controllers realize.

Distribution Percent of Maximum Savings

U[0.9,1.1] 75.9%
U[0.7,1.3] 18.1%
U[0.5,1.5] 3.3%

Note that as the variance increases the relative savings that the second-order

controller realizes drops to almost nothing. Indeed, we can see from Figure 32

• ..
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3() - OPT e3)

48- - _ _

38-

28-

Maximin

Least

0.7 8.8 0.9 1.0 1.1 1.2 1.3
Figure 31. JL - % vs.e3 for 1st and 2nd-order controllers,

93 U [0.7,1.3]; and J iOP VS.8 3 aEe [0.7,1.31.
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J -3 J1OPT (6e3)

486-

2nd-Order
Least
Sensitive

Least
Sensitive

286-

Maximin

l'el-

8.4 8.6 8.8 1.8 1.2 1.4 1.6
Figure 32. J LS- OT vs. e for 1st and 2nd-order controllers,

a -U[0.5,1.5]; and J mm iOPT vs. O39 3 E [0.5,1.51.
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that the performances of the first and second-order controllers are almost

identical for the U[0.5,1.5] distribution.

We will see that the results for this example are similar to those

Uof Example 5.4. We now consider Example 5.4: _

=1 2 =-1, 6 3 =1, a64 unknown

-with the uniform distribution induced on 10%, 30% and 50% spreads:

o 4-U[0o.9,1.1]

o 4-U[0.7,1.3] (183)

8 4-U[0.5,1.5]

The gradient algorithm is used to calculate first and second-order least

1sensitive controllers for these distributions, along with the corresponding

average cost. The results are:

Distribution Controller Order p 1  p2  p 3  D 4 JV

U[0.9,1.1] 1 -5.9154 -8.U29 28.7238
2 -7.5431 -4.4347 1.3778 -5.8746 27.3502

*U[0.7,1.31 1 -5.9273 -9.2932 33.0063
2 * -12.2456 -5.2146 1.5449 -6.5604 31.9225

U[0.5,1.51 1 -6.2092 -11.4348 43.7246
2 -22.4724 -6.9572 1.8310 -8.2123 42.8125

The plots of J S()- i P 9 for first and second-order

controllers are shown in Figures 33, 34 and 35 for each distribution.

Again, we make the same types of observations.

1) We calculate the decrease in average cost of the second-order controllers

relative to the average cost of the first-order controllers.

-- - - - - - - -* -
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J(6e4) - OPT( 6 4~

2nd- Order
Least
Sensitive

688=-

1st-Order
Least
Sensitive

Maximin

288--

I sqce 4

8.4 8.6 8.8 1.8 1.2 1.4 1.6
Figure 35. JL - OP vs. S for 1st and 2nd-order controllers,

e4 U[0.5,1.5]; and JM - vs.84 6 e=e[0.5,1.51.
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Distribution Decrease in J AVG

U[0.9,l.l] 4.8%
U[0.7,1.3] 3.3%
U[0.5,1.5] 2.1%

Again, the savings is significant, but relatively low.

2) We calculate the percentage of the maximum possible savings over the

first-order controllers that the second-order controllers realize.

Distribution Percent of Maximum Savings

U[0.9,1.1] 76.8%
U[0.7,1.3] 15.2%
U[0.5,1.5] 4.2%

Note that as in Example 5.3 the relative savings realized by the second-order

controller drops to almost nothing, and we can see from Figure 35 that the

performances of the first and second-order controllers are almost identical.

Examples 5.3 and 5.4 lead to very similar results. This is true

for several reasons. The canonical form of the system and the use of identical

spreads around the same nominal value make the role of e very similar toe34

* in the transfer of the observation information to the control effort.

From these four examples we have discovered that the use of the

second-order controllers can lead to large savings over the use of first-

order controllers, but only in terms of the total savings possible. The

losses incurred by using the first-order controllers relative to the actual

coverage cost, however, is less significant. Also the two controllers become

more similar as the variance increases, as in Examples 5.3 and 5.4 where they

are seen to be almost identical in one case.
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These observations are useful when one is considering which order

to choose in the design process. Basically, if the fixed costs associated

with increasing the controller dimension are greater than the resulting

savings in operating costs, one should probably want to choose the first-order

controller. Therefore, for higher dimensional systems, the controller used
should be that which balances the fixed cost of increasing the controller

order with the savings in operating costs that the increase realizes. This

concludes our consideration of the design of least sensitive controllers for

these examples.

5.3. Minimax Controllers

In this section we seek to find minimax controllers for these

examples. In Chapter 4 we saw that the solution to the minimax problem, (8),is

* equivalent to the solution to the maximin problem, (9),if the saddle-point

condition, (56),of Theorem lholds. We saw that this condition is equivalent

to showing that

_7.JMM(6) <_ JMM(e 0) (184)

where JMM(O) is the maximin cost over the parameter set and 0 is the maximin

* solution point. In Chapter 4 we saw that it is difficult to find general

conditions that guarantee the satisfaction of (184). In this section, we

illustrate how numerical procedures can be used to design maximin controllers

and to verify (184) when the particular example is already defined.

The maximin solution occurs at the value of the unknown parameter

that maximizes the optimal cost, JOPT(e). Therefore, the maximin solution can

: :.-. : - . .. .. .. . .- . . .... ,. .. .. .. ,. .: - . ::- . ..Z . . . Z .... . . . . . ..
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be found by inspecting a plot of Jo(e) over the parameter range. Once the

maximin solution is found, and since we can numerically check that S in (50a)

is stable in these examples, condition (184) may be proved by inspecting a

plot of J M(8) over the parameter range.

We use this numerical method of design in Examples 5.1 through 5.4 -

and compare the performances of the resulting controllers to those of the least

sensitive controllers.

-m We start with Example 5.1:

81 unknown, 02 = - 1, 03 f 1, a4 = 1

with 10%, 30% and 50% spreads:

a1E [0.9,1.1]

S0E [0.7,1.3] (185)

1 C [0.5,1.5]

A plot of J OPT( ) for e [0.2,1.8] is shown in Figure 36. From this plot

we see that the maxima over intervals (185) occur at

010 =1.1

00 = 1.3 (186)

0101.5

We can use the gradient algorithm to calculate the corresponding maximin

controllers in the block diagonal coordinates. The results are:

Interval P1  P2  P3  P4  JAVG

[0.9,1.1] -7.3819 -4.4681 1.4608 -6.5788 27.828
[0.7,1.3] -8.3046 -4.7127 1.6794 -7.9796 32.853
[0.5,1.51 -9.2709 -4.9540 1.9009 -9.6529 39.970

*:-L"*.... .. * - " - " . - . ' - " -
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JOPT(l)

8-a

-48-
""'28

..

9.8 8.25 9.59 8.75 1.89 1.25 1.58 1.75 2.80
Figure 36. JOPT vs. a V
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A plot of JMM ( 1) is shown in Figure 37 for all three intervals. From these

curves we can see that

J (El ) < J MM (6lO0

for each of the intervals (185) and corresponding maximin points (186).

Therefore, these are minimax controllers also.

Figures 24, 25 and 26 show the plots of JMM ( 1) - OPT(61 that we

use as our typical performance measure. Note we can make similar observations

as we did in the case of least sensitive controllers.

1) We calculate the decrease in average cost of the minimax controllers

relative to the average cost of the fizst-order controllers.

Interval Decrease in J (Minimax) Decrease in J (2nd Order)
AVG AVG

[0.9,1.11 2.8% 5.2%
[0.7,1.31 -4.6% 4.6%
[0.5,1.5] -10.5% 4.2%

Note that only for the [0.9,1.1] case are the minimax controllers better than

the first-order least sensitive controllers, and the minimax controllers are

never better than the second-order least sensitive controllers.

r.. 2) We calculate the percentage of the maximin possible savings over the

first-order controllers that the minimax controllers realize.

Interval % of Max. Savings (Minimax) % of flax. Savings (2nd Order)

[0.9,1.1] 45.8% 81.9%
[0.7,1.3] -36.8% 34.6%
[0.5,1.5] -49.5% 21.1%

Again we see that only in the [0.9,1.1] case are the minimax controllers

better than the first-order controllers, and the minimax controllers are

never better than the second-order controllers.

.. ......... ............. .... ..
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Figure 37. J mm(a 1 vs.9 1 for various maximin controllers.
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In this example we see that the performances of the minimax controllers

are again generally inferior to the performances of least sensitive controllers,

even with order reduction. We see that this is also true in the other

examples. -.

Next we consider Example 5.2:

01 = 1, unknown, 03 1, 04 1

with 10%, 30% and 50% spreads:

@2 E [-l.l,-0.9]

a E [-1.3,-0.7] (187)

e2 e [-1.5,-0.51

A plot of JoPT(62) for 02 E C-1.8,-0.2] is shown in Figure 38. From this plot

" we see that the maxima over intervals (187) occur at

020 = -0.9

e20 = -0.7 (188)

020= -0.5

We can use the gradient algorithm to calculate the corresponding maximin

controllers in the block diagonal coordinates. The results are:

Interval Pl P2  P3 P4  JAVG

[-1.1,-0.9] -7.0685 -4.3528 1.3354 -6.0950 26.927
[-1.3,-0.7] -7.3982 -4.3916 1.3016 -6.8252 27.945
[-1.5,-0.5] -7.8451 -4.4654 1.2704 -7.7766 29.976

A plot of JMM(92) is shown in Figure 39 for all three intervals. From these

curves we can see that

- • - ,"..
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OQPT (62)

48- - ---- --
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Figure 38. J OTvs. 2
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Figure 39. J (9) vs.06 for various maximin controllers.
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JMM (a 2) < JMM(620)

for each of the intervals (187) and corresponding maximin points (188).

Therefore, these are minimax controllers also.

" Figures 27, 28 and 29, show the performance of the minimax

.- controllers. We again make the same observations.

1) We calculate the decrease in average cost of the minimax controllers

relative to the average cost of the first-order controllers.

Interval Decrease in JAVG (Minimax) Decrease in JAVG (2nd-Order)

[-1.1,-0.91 5.0% 5.2%
[-1.3,-0.71 4.3% 8.1%
[-1.5,-0.51 4.0% 8.6%

Note here that in all three cases the minimax controllers are better than the

" - first-order least sensitive controllers, but are not as good as the second-

order controllers.

2) We calculate the percentage of the maximin possible savings over the first-

order controllers that the minimax controllers realize.

Interval % of Max. Savings (Minimax) % of Max. Savings (2nd-Order)

(-l.i.-0.9] 94.0% 98.3%
[-1.3,-0.71 63.2% 88.7%
[-1.5,-0.5] 42.0% 80.4%

Again, we see that the minimax controller is better than the first-order

controllers, but not as good as the second-order controllers.

In Examples 5.1 and 5.2 we saw that the maximin controllers were

indeed equivalent to the minimax controllers. In the next two examples we see

cases where this is not true.

m. ...
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Consider Example 5.3:

01 M 1, - 1, 03 unknown, 8 = 1

*with 10%, 30% and 50% spreads:

a [0.9,1.11

" 3 [0.7,1.3] (189)

- 03E [0.5,1.51

A plot of J oPT(e3) for a3 E [0.2,1.8] is shown in Figure 40. From this plot

we see that the maxima over intervals (189) occur at

030 = 0.9

030 = 0.7 (190)

030 =0.5

We can use the gradient algorithm to calculate the corresponding maximin

controllers in the block diagonal coordinates. The results are:

Interval P1  P2  P3  P AVG

[0.9,1.1] -6.7615 -4.2817 1.4940 -6.2355 28.420
[0.7,1.3] -6.4389 -4.1675 1.8976 -7.5453 41.525

" [0.5,1.5] -6.1749 -4.0743 2.6272 -10.0216 107.885

A plot of JMM(83) is shown in Figure 41 for all three intervals. From these

curves we can see that

JM('3) < JMM('30)

only for the interval, [0.9,1.1]. Therefore, the maximin solution corresponds

to the minimax solution only for this interval. We can see from the plots of
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JOPT(e3)

3 -3

480 -

0.00 0.25 0.58 0.75 1.00 1.25 1.50 1.75 2.00
Figure 40. J OPT vs. ae3 *
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JM( 3 )
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Figure 41. J mmvs. 3 for various maximin controllers.
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the performance of these controllers in Figures 30, 31 and 32 that the

performance of the controllers is not good, although there are no marked

dissimilarities from cases where the maximin controllers are equivalent to

the minimax controllers. Again, we make our observations.

1) We calculate the decrease in average cost of the maximin controllers

relative to the average cost of the first-order controllers.

Interval Decrease in JAVG (Maximin) Decrease in JAVG (2nd-Order)

[0.9,1.1] 1.3% 4.8%
[0.7,1.3] -23.8% 3.3%
[0.5,1.5] -138.2% 2.1%

As can be seen, the performance of the two maximin controllers that do not

exhibit the saddle point property compare very poorly.

2) We calculate the percentage of the maximin possible savings over the first-

order controllers that the maximin controllers realize.

Interval % of Max. Savings (Maximin) % of Max. Savings (2nd-Order)

[0.9,1.1] 19.8% 75.9%
[0.7,1.31 -147.1% 18.1%
[0.5,1.5] -157.5% 3.3%

Again, the poor performance of the maximin controllers that do not exhibit -

the saddle-point property is evident.

We should expect to find a similar situation in Example 5.4 as in

Example 5.3, and indeed we do. Consider Example 5.4:

= 1 2 - 1, e3 = 1, e unknown

with 10%, 30% and 50% spreads:
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8e (0.9,1.1]
4

E) E [0.7,1.3] (191)
4

- 4E [0.5,1.51

• A plot of J (0) for e E [0.2,1.8] is shown in Figure 42. From this plot
OPT 4 4

* we see that the maxima over intervals (191) occur at

0.9040

040 =0.7 (192)

e40 =0.5

We can use the gradient algorithm to calculate the corresponding maximin

controllers in the block diagonal coordinates. The results are:

Interval P P P P 4AVG
1 2 3 4AV

[0.9,1.1] -6.7020 -4.2678 1.4906 -6.1664 28.322
[0.7,1.3] -6.2585 -4.1239 1.8828 -7.2761 40.640
[0.5,1.5] -5.8769 -4.0005 2.5894 -9.4004 85.132

A plot of JMM(04) is shown in Figure 43 for all three intervals. From these

curves we can see that

JMM('4) <JMM(040) -"

only for the interval, [0.9,1.1]. Therefore, as in Example 5.3, the other

two controllers are not minimax controllers, and they exhibit the same type

of poor performance. Again, we make the observations.

1) We calculate the decrease in average cost of the maximin controllers

relative to the average cost of the first-order controllers.

~~.1

I - *- * .. .,
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Figure 43. J vs. 0 for various maximin controllers.-MM 4
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Interval Decrease in JAVG (Maximin) Decrease in JAVG (2nd-Order)

[0.9,1.1] 1.4% 4.8%
[0.7,1.3] -23.1% 3.3%
(0.5,1.5] -94.7% 2.1%

2) We calculate the percentage of the maximum possible savings over the first-

order controllers that the maximin controllers realize.

Interval % of Max. Savings (Maximin) % of Max. Savings (2nd-Order)

[0.9,1.1] 22.3% 76.8%
[0.7,1.3] -149.4% 15.2%
[0.5,1.5] -56.9% 4.2%

As in Example 5.3, the maximin controllers that do not satisfy the saddle-

point condition exhibit poor performance.

We have seen from these examples that although the minimax (or

maximin) controllers are not better than the second-order least sensitive

controllers, there are many cases where they are superior to the first-order

least sensitive controllers, particularly when the intervals are relatively 7A

small.

Note that in few cases is the maximum cost over the interval greater

for the minimax controllers than for the least sensitive controllers (see

Figure 27 for an exception), so that this design consideration is not as much

of an issue in these examples.
S..,

5.4. Conclusions

In conclusion, the design of least sensitive and minimax controllers

for a second-order system was considered in this chapter. The dimension of

7

"=- .f . .
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the system allowed for the investigation of the effects of reduced-order

least sensitive controllers, and also provided an illustration of a numerical

design procedure for minimax controllers.

In the case of the design of least sensitive controllers, it was

seen that some performance is sacrificed for order reduction. Furthermore,

' the sacrifice in performance is on the average a small percentage of the total

average cost if one used an optimal controller at each value of the parameter.

However, a large percentage of this additional cost can be removed using

full-order controllers in these examples. The choice of controller order

was seen to be a trade-off between the extra fixed costs for increasing the

order and the lower operating costs this increase realizes.

In the case of the design of minimax controllers, the dimension of

the system provided an illustration of a numeric design procedure that can be

performed if one has a specific example. The maximin solutions were found

using a plot of the optimal cost over the range of uncertainty. The saddle-

* point condition was verified using a plot of the cost incurred by the maximin

controller over the range of uncertainty. Some examples where the saddle point

" did not exist were found, and the corresponding controllers were seen to exhibit

poor performance. Finally, ic was seen that the minimax controllers generally

have poorer performance than the second-order least sensitive controllers, but

in many cases have better performance than the first-order least sensitive

controllers.
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CHAPTER 6

CONCLUSIONS

This thesis has considered the design of controllers for linear

stochastic systems where the corresponding models have uncertain parameters.

-' In Chapter 1, we discussed several ways of handling these uncertainties in -

the design process. One method is to induce a distribution on the parameter

set. Another method is to allow for variations about a nominal value. A

third method is to assume that the parameter lies within a given set, and

could take values which are unfavorable to the designer.

The objectives for the design of controllers for handling these

Auncertainties may vary. One may only desire stable performance over the whole

range of parameter values. One may desire that the cost incurred for the

controller at each value of the parameter be less than a certain value.

Another objective may be to achieve near optimal performance for as wide a

range of parameter values as possible. The two design procedures discussed-
71

in Chapters 3 and 4 are based on certain assumptions about the parameter sets,

and achieve design objectives based on these assumptions.

I n Chapter 3, we assumed that the parameter set is a compact set

centered about a nominal value. We assumed each value equally likely; so we

induced a uniform distribution on the parameter set. Our design objective was

to have as near optimal performance as possible for the widest range of off

nominal values of the parameter in the set. Using the assumptions on the

parameter set, we were able to formulate a problem where we minimized the

average cost over the entire set.
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The resulting problem is a constrained optimization problem.

Ashkenzai and Bryson (1] developed a method of solution when the parameter

set has a finite number of values, and a discrete distribution is assumed.

This procedure was extended here to solve problems when the parameter set is

compact and a continuous distribution is assumed.

Some scalar examples were investigated to see what design objectives

were met. It was found that:

1) Performance was best at values of the parameter near the nominal value,

* but biased towards those values that are associated with higher costs.

2) The performance generally worsened as the value of the parameter under

* consideration is further away from the nominal value.

3) The performance is near optimal for certain values of the parameter, but

not optimal at any value, so that some performance is always sacrificed at all

values of parameter in order to achieve less sensitivity.

In Chapter 4, we assumed that the unknown parameters were in convex,

U compact sets centered around a nominal value. Our design objective was to

find the best controller for the worst-case model. Solving this problem

directly is infeasible since we cannot describe all models associated with

every admissible control. Another problem is to find the best control for-

all models, and then to find the model that exhibits the worst cost when

excited by its optimal controller. The two problems, described by (8) and (9),

are equivalent if a saddle point exists at the solution point of (9).

We outlined a procedure for solving the maximin problem, (9), by

using the Frdchet differentials of the optimal cost function, (48). Looze,

Poor, et al. [7] have shown that a saddle point exists for a general class of
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uncertainty sets where the uncertainty lies in the noise covariance. We were

unable to establish the same type of result when the uncertainty is in the

system dynamics because the formulation of J(u,e) in (5) became too complicated.

However, a summary of the conditions a problem must satisfy for a saddle point

to exist was detailed in Theorem 2.

We then considered the equivalence of (8) and (9) for scalar systems

and parameter sets that are intervals on the real line. We found cases where

the saddle point does not exist, but we were able to describe all the sets

satisfying the assumptions such that a saddle point does exist.

The examples of Chapter 3 were then investigated in Chapter 4 to see

what design objectives were met. It was found that:

1) The controllers are optimal at the maximin point, so that there exist some

values of the parameter such that the performance of the minimax controllers

is better than the least sensitive controllers.

2) The performance worsens as we consider values of the parameter that are

further away from the maximin point to such a degree that we found the least -4

sensitive controllers exhibit superior performance over most of the range of

uncertainty.

3) We found that in some cases the maximum cost for the minimax controllers

is less than the maximum cost for the least sensitive controllers.

In Chapter 5, we considered a two dimensional system in orde- to

illustrate some additional properties of these two types of controllers.

First, the designs of full-order and reduced-order least sensitive controllers

were considered. We saw that performance was sacrificed when the order of the

controller was reduced, but this sacrifice is a small percentage of the total

average cost, so that it may be desirable to use a reduced order controller

A ,A .-
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over the full order controller if the savings in the fixed costs are

comparable to the additional operating costs exhibited by the reduced order

controllers.

U Second, a numerical procedure for designing minimax controllers

for specific examples was illustrated. The maximin solution was found by

investigating a plot of the optimal cost for each value of the parameter. The

do saddle point condition was checked using a plot of the cost incurred by the

maximin controller for each value of parameter in the set. Using this

procedure we found examples where the saddle point does not exist, and we saw

that these maximin controllers exhibited poor performance.

We compared the performances of the minimax and maximin controllers to

that of the least sensitive controllers for these examples. It was seen that inS ~

many cases the minimax controllers exhibited better performance than the first-

order controllers, but were never better than the full order controllers.

The choice of minimax controllers or least sensitive controllers

must be based on one's initial design objectives. If we simply desire better

performance over the widest range of parameter values, the least sensitive

controllers would be preferred. However, there are cases when the maximum

-* value of the least sensitive controllers exceeds that of the minimax control-

lers, in which case the maximin controllers may be preferred if there is a

"' ceiling on the maximum cost that is tolerable.

Reduced-order least sensitive controllers may be preferred over

higher or full-order controllurs if the saving in the fixed costs of the order

reduction is comparable to the operating losses incurred by reducing the order.

One avenue for future work may be to systematize the decision process of what

order is most desirable for a certain class of systems.

L
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There is also a need to obtain saddle point results for maximin -

controllers designed for systems of higher dimension. There may be a class

of parameter sets such that a saddle point condition for each example

considered may be relieved to some degree.

Furthermore, our choices of design are not necessarily restricted to

the two methods considered in this thesis. One idea is to use a combination

of the two designs, for instance, one can use a least sensitive controller

designed for an interval that is wider than the interval under consideration,

and thus can reduce the high maximum costs that are prevalent at the end points

of the intervals. Of course, this sacrifices performance at other values in the

interval. Therefore, one should not necessarily restrict his choices of

controllers to the designs considered in this paper. Our main interest is in

designing the controller that best achieves our design objectives.
* '

ID2 .2
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APPENDIX

A CONJUGATE GRADIENT ALGORITHM

C This program solves the necessary conditions of
C the opt mization problem in Chapter 3. A conjugate
C gradient algorithm, ZXCGR, is used from the IKSL
C library (6]. An explanation of the algorithm can be
C found in [8].

" C This program first reads in the system information,
C then calculates an approximating discrete distribution
C to the uniform distribution. Then, after being given
C the initial values of P, the program calls the gradient
C routine, ZXCGR, which calls JTP for the values of JAY
C and its gradients, DHAM.
C
C

DOUBLE PRECISION S(20,20),G(10,10),N(20,20),H(10,10),L(10,10),
A V(20,20),W(20,20),WU(10,10),
A PT,T(2,1000),
A P(10),DHAM(10),WK(60),
A ACCMAXFNDFPRED,JAY, AT,BT, INC, VAL, TEM, E

INTEGER NX, NU, NY, NZ NW, NV, NDIST,
*A NFTNGT,NKT,NHT,

A FT(5,3),GT(5,3),KT(5,3),HT(5,3),
A NPIER,I,J
COMMON S(20,20),G(10,10),N(20,20),H(10,10),L(10,10),
A V(20,20),W(20,20),WU(10,10),
A PT,T(2,1000),
A NX, NU, NY, NZ ,NW, NV, NDIST,
A NFT, NGT, NKT, NHT,
A FT(5,3),GT(5,3),KT(5,3),HT(5,3)
EXTERNAL JTP

C
C This section reads in the system matrices, their

1. C dimensions, and the location of the unknown parameters
C in the system matrices.
C
C These are the dimensions of the system matrices.
C

READ(5, ')NX,NU,NY,NZ ,NW, NV,NDIST
C
C This reads the entries of the "F" matrix.
C

READ(5,#)((S(IJ),J=1,NX),I=1 ,NX)
C
C This reads the location of the unknown parameters in F.
cC NFT- number of parameters in F

C FT(I,I)- row location of parameter

o.
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C FT(I,2)- column location of parameter
C nT(I,3)- entry of T vector to be put in this location
C

READ(5,')NFT, ((FT(I,J) ,J=1,3)1=1 ,NFT)
C
C Entries of the %"G matrix.
C .

- . READ(5,*)((GCI,J),J=1,NU),I=i,NX)
READ(5,O)NGT, ((GT(I,J),J=1 ,3),I:1,NGT)

C Entries of the OKO matrix
C

READ(5,*)C(NCI,J),J=1,NW),I=1,NX)
READ(5,')NKT, ((KT(I,J),J=1 ,3) ,I=1,NKCT)

C
C Entries of the OHO matrix
C

READ(5,0)((H(I,J),Jl1,NX),I=1 ,NY)
READ(5, ')NHT, ((HT(I,J) ,J:1 ,3),I=1 ,NHT)

C
C The following read the entries of the L, Q, R, WX,
C and WUJ matrices, respectively.

-. C

READ(5,)((LI,J),J=1 ,NV),Izl ,fY)
READ(5,*)((V(I,J),J:1 ,NW),I=1 ,NW)
READ(5,') ((V(NW+I,NW+J) ,J=1 ,NV) ,Izl ,NV)
READ(5,*)(CW(I,J),J=1 ,NX),I=1 ,NX)
READ(5,E)((WU(I,J),J=1,NU),I=1,NU)

C
C This section calculates an approximating discrete

*C distribution to the uniform distribution for a
C one dimensional T vector. User must supply any
C code needed for higher dimensional T vectors.
C
C This reads in the desired interval of T values for
C the uniform distribution.
C

READ(5,*)AT,BT
C
C This calculates the discrete distribution.
C

IF(NDIST.EQ.1)GOTO3
E=0.0
DO 1 I=1,NDIST-2

1 E=E+I'*2
TEM=DSQRT(12.O'(1 .O/NDIST-.25+E/(NDIST'(NDIST-1 )012)))
INC=(BT-AT)/TEW/(NDIST-1)
VAL= (AT.BT)/2-CBT-AT)/2/TEM
DO 2 I:1,NDIST
T(1,I)=VAL

2 VAL=VAL+INC
GOT0~4

3 T(1,1):AT
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C
C This section provides the initial value of P forpC the local gradient algorithm, ZXCGR, and also some
C other initial values the routine needs. See Reference
C [6) for details on the usage of ZXCGR.
C
4 PT=1.O/NDIST

DO 5 I=1,NX
DO 5 J=1,NX

5 W(I,J)=PTOW(I,J)
NP= CNt+NY)*NZ
READ(5,*) (PCI) ,I=1 ,NP)
READ (5, ')DFPRED
ACC= .le-9
MAXFN=20
CALL ZXCGR(JTP,NP,ACC,MAXFN,DFPRED,P,DHAM,JAY,WK,IER)

C
C ZXCGR yields the stationary values of P, the value of the
C cost, JAY, and the gradients, DHAM, at those values of
C the vector, P.
C

PRINT1 00, (PCI),I=1 SNP)
PRINTi 00, CDHAM(I) ,I=1 ,NP)

100 FORMATC2X,5CEl4.8,2X)/)
PRINT*, JAY
STOP

* END
C
C

SUBROUTINE JTP(NP, P, JAY, DHAM)
C

* CIC This subroutine calculates JAY, and its gradients, DHAM,
C which is the information needed for the IMSL conjugate
C gradient algorithm, ZXCXGR £6].
C

DOUBLE PRECISION S(20,*20),G(10,10),NC2O,2O),H(10,1O),L(10,1O),
A V(20,20),W(20,20),WU(10,10),
A PT,T(2,1000),
A BC10,10),C(10,1O),tS(10,1O),DC(10,10),
A DS(20,20),DN(20,20),DW(20,20),
A COVC20,20),LAM(20,20),
A ALPHT(190,19O),RESB(190,190) ,RVCR(190) ,RVLR(190),
A RES(20,20),RESAC20,20),RVCC190),RVL(190),
A P(NP) ,DHAMC(NP) ,JAY,work(200)
INTEGER NX,NU,NY,NZ,NW,NV,NDIST,

A NFT, NG T,NKT, NHT,
A FT(5,3),GT(5,3),I(T(5,3),HT(5,3),
A NP,NZT, NS, NN, NVEC,
A I,J,IA,IB,IC,ID,IP,M,LM,KK,II,LL,JJ,IER
COMON S(20,20),G(10,10),N(20,20),H(10,10),L(10,10),

A VC20,20),WC20,20),WU(1O,10),
A PT,TC2,1000),
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A NX, NU, NY, NZ, NW, NV, NDIST,
A NFTNGT,NKT,NHT,
A FT(5,3),GT(5,3),KT(5,3),HT(5,3)

C
C Some initializations that are needed.

U. C
NS=NX.NZ
NN=NW+NV
NVEC=NSO(NS+1)/2
.. T=NZ/292

JAY=O
DO 6 Izl,NP

6 DHAM(I)=O
C
C This section puts the values of P(IP) into the
C appropriate entries of A(P), B(P), and C(P).
C

IP=-O
DO 1 I=2,NZ,2
IP=IP+I
S(NX+INXI-1 )=P(IP)

- +IPfIP+I
-* .S(NX+I,NX+I)=P(IP)

1 S(NX+I-1,NX+I)=1
IF(NZT.EQ.NZ)GOT02
IP=IP+l
S(NS, NS)=P(IP)

2 DO 3 I=1,NZ
DO 3 J=1,NY
IP=IP+I

3 B(I,J)=P(IP)
DO 14 I=2,NZ,2

4 C(1,I)=I

IF(NZT.NE.NZ)C (, NZ) =1
DO 5 I=2,NU
DO 5 J=1,NZ.
IP=IPl-

5 CCIJ):P(IP)
C
C This loop sums JAY and DHAM for all the values of T

. C in the distribution that was passed from the main
C program.
C

DO 1000 IDf1,NDIST
C
C This section puts the values of T into the appropriate
C entries of F, G, K, and H, according to the positions
C indicated by FT, GT, KT, HT, respectively.
C

DO 10 I=1,NFT

10 S(FT(I,1),FT(I,2))=T(FT(I,3),ID)
DO 11 If1,NGT

11 G(GT(I,1),GT(I,2))=T(GT(I,3),ID)

A.,.
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DO 12 Iz1,NKT
12 N(KT(I,l),KT(I,2))zT(KT(I,3),ID)1 13 DO 13 I=1,NHT

13 H(HTCI,1),HT(I,2))=T(HT(I,3),ID)
C
C This section calculates 8, W, and NVN'.
C These are needed to solve the Lyapunov equations,
C (214), and (27).

CALL VMLF(G,C,NX,NU,NZ,10,10,RES,20,IER)

DO 20 I=1,NX
DO 20 Jul,RL

20 S(I,NX+J)RS(I,J)
CALL VMLFF(B,H,NZ,NY,NX,10,10,RES,20,IER)
DO 21 I=1,NZ
DO 21 J=1,NX

* 21 SCNX..I,J)=RES(I,J)
CALL VMULFF(B,L,NZ,NY,NV,10,10,RES,20,IER)
DO 22 I=1,NZ
DO 22 J=1,NV

22 N(NX+I,NW+J)=RES(I,J)
CALL VMULII(C,WU,NU,NZ,NU,10,10,RESA,20,IER)
CALL VMULFF(RESA,C,NZ,NU,NZ,20,10,RES,20,IER)
DO 23 I=1,NZ
DO 23 J=1,NZ

*23 W(NX+I,NX.J)=PT'RES(I,J)
CALL VMLFF(N, VNS, NN,NN,20,20,RFSA, 20,IER)
CALL VMULFP(RESA,N,NS,NN,NS,20,20,RES,20,IER)

* C
*C This section rearranges the entries of S into a matrix,

C ALPHT, so that the equations, (241) and (27), are of the
C form, "AxzB", which is suitable for inversion. See
C Reference (14].
C

M=0
DO 70 II=1,NS
DO 70 JJ=II,NS
M:14.1

P IF(II.EQ.JJ)G0TO78
RVC(M)-RES(II,JJ)
RVL(M)=-W(II,JJ)
GOT07 9

78 RVC(M)z-RES(II,JJ)/2
RVL(M)=-WCII,JJ)/2

79 LtMZO
DO 70 KKz1,NS
DO 70 LL=KK,NS
L14zLJ4. 1
IF(KK.EQ.II. AND.LL.NE.JJ)G0T071
IF(KK.NE.II. MD.LL.EQ.JJ)G0T072
IF(KK.NE.II.AND.LL.NE.JJ. AND.KK.EQ.JJ.AND.LL.NE.II)G0T073
IF(KK.NE.II. MD.LL.NE.JJ.AND.K.NE.JJ. MD.LL.EQ.II)GOT7I
IF(KK.NE.II. ND.LL.NE.JJ.AND.KK.NE.JJ.AND.LL.NE.II)G0T075
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IF(KL.EQ.II.AND.LL.EQ.JJ.AND.KK.EQ.JJ.AND.LL.EQ.II)G0T076
IF(KK.EQ.II.AND.LL. EQ.JJ. AND.KK.NE.JJ. AND.LL.NE.II)00T077

71 ALPHT(HLHWS(LL,JJ)
G0T07 0

72 ALPHiT(M,LM)=S(KIC,II)
GOT07 0

73 ALFHT(M,LM)=S(LL,II)
GOTOTO

74 ALPHT(,L)S(I,JJ)
GOT070

75 AL PH T(MLM) =0
- - GOT070

76 ALPHT(M,LM)=S(KK,II)
GOT070

77 ALPHT(M,LH)-S(KI,II)+S(LL,JJ)
70 CONTINUE
C
C This subroutine inverts ALPHT so that COV and LAM
C can be calculated. A warning - LIXV2F often will
C not work for smaller sizes of ALPUT (dimension 3X3).

.4 C
CALL LINV2F(ALPHT,NVEC,190,RESB,12,WORK,IEE)

C
C This section calculates COy and LAM using the inverted
C ALPHT.
C

CALL VNULF(RESB,RVL,IVEC,NVEC,,190,790,RVLR,190,IRR)
-CALL V1 LF!(RESBRVC,NVEC,NVEC,1 ,190,19O,RVCIR,190,IER)
IPMO
DO 31 1=1,113
DO 31 J=1,113
IP=IP+1
COV(I,J)=RWWR(IP)
COV W, I)=RVCR (I P)
LAI(I,J)=RVLR(IP)

31 LAM(J,I)=RVLR(IP)
C

*C This section calculates JAY=tr[WOCOVJ.
C

CALL VMULFF(W, COV,NS,NS,NS,20,20,RES,20,IER)
DO 32 I=1,NS

32 JAY:JAY+RS(I,I)
C
C This section calculates the gradients of JAY, DHAI4,
C for the P's that are entries of the "AM") matrix.
C For the *A" parameters-
C
C DHAMztrU[LAM4DSDS"LAM]O*COVj
C

I P=O
Do 140 I:2,NZ,2

* IP=IP,1
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CALL VHULFF(DS,COV,NS,148,NS,20,20,RESA,20,IER)
CALL VMULFF(RESA,LAM,NS, NS,NS,20 .20 ,RE,2O,IER)

S 41 DHAI(IP)=DHAM(IP)+2*RES(IA, IA)
DS(NX+I,NX+I-1)zO
IP.IP+1
DS(NX+I,NX.I)=1
CALL VMULFF(DS,COV,NS,NS,NS,20,20,RESA,20,IER)
CALL VMULFF(RESA,LAM,NS,NS4,14,20,20 ,RES,20,IEI)
DO 412 IA=1,NS

412 DHAM(IP)=DHAM(IP)+2*RES(IA,IA)
410 DS(NX+I,NX+I)=0

IF(NZT.EQ.NZ)GOO'1'
IP:IP+1
DSCNS,NS)=l
CALL VMULFF(DS,COV,NS,NS,148,20,20,RESA,20,IER)
CALL VMULFF(RESA,LAM,NS,148,14,20,20,RES,20,IER)
DO 413 IA:1,NS

413 DHAM(IP)=DHAM(IP)+2*RES(IA,IA)
DS(NS,NS)=0

C
C This section calculates the gradients of JA4Y, DHAM,

*C for the P's that are entries of the "8(P)" matrix.
C For the RB " parameters-

* C
C DHAM=tr([LAM*DS.DS8"LAM]*COV)
C +tr{(LAM*EDN*V ON'+N*V DN'J
C
44l~ DO 50 I=1,NZ

DO 50 IA=1,NY
I P1 P4-
DBCIIA)=1p CALL VMULFF(DB,L,NZ,NY,NV,10,10,RES,20,IER)
DO 53 IB=1,NZ
DO 53 IC=1,NV

*53 DN(NX+IB,NW.IC)=RES(IB,IC)
CALL VMULFF(DN,V,148,NNIINN,20,20 ,RE8A,20,IER)
CALL VMULFP(RESA,N,NS,NN,NS,20,20,RES,20,IER)
CALL VMULFF(N,V,NS,NN,NN,20,20,RESB,190,IER)
CALL VMULFP(REBtDN,NS,4N,NS,19O,20,RESA,20,IER)
DO 54l IB=1,NS

5 O 54 IBIC):(1,CNE8(Ec
54 RS(IBIC)1,N ,I)8EA(BC

CALL VMULFFCLAM,RES,148,NS,N8,20,20,RESA,20,IER)
DO 55 IB:1,148

*55 DHA(IP):DHAM(IP)+RE8A(IB,IB)
CALL VMULFF(DB,H,NZ,NY,NX,10,10,RS,20,Iit)
DO 56 IB=1,NZ
DO 56 ICz1,NX

56 DS(NX+IB,IC)=RFS(IBIC)
CALL VMULFF(DS, COV,N8,NS,NS,20,20,RESA,20,IER)
CALL VMULFFCRESA,LAI4,N8,NS,N14,20,20 ,JES,20, lER)
DO 57 IB:1,148

Ui 4 *. 4 -. **,*.**
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57 DHAZ4(IP)=DHAi4(IP)+2#BESCIB,IB)
DO 58 IB=1,NZ
DO 59 IC=l,NJ

59 DN(NX+IB,NW.IC)=O
DO 58 IC=1,NX

58 DS(NX.IBIC):O
50 DB(IIA)=0
C
C This section calculates the gradients of JAY, DRAM,
C for the P's that are entries of the "C(P)w matrix.
C For the "CO parameters-
C
C DHAM-tr{(DW.LAM4DS.DS'OLAMJ*COV}
C

DO 60 I=2,NU
DO 60 J=1,NZ
IPz-IP.1
DC(I,J)z1
CALL VMULFM(DC,WU,NU,NZ,NU,10,1O,RESA,20,IER)
CALL VHULFF(RESA,C,NZ,NU,NZ,20,10,RES,20,IER)
DO 61 IA=1,NZ
DO 61 IB=1,NZ

61 DW(NX+eIA,NX.ThB)=RES(IA,IB)
CALL VMLF?(C,WU,NU,Z,NU,10,10,RESA,20,IER)
CALL VIULFF(RESA,DC,IN ,NU,NZ ,20,10,RES,20,IER)
DO 67 IA=1,NZ
DO 67 IB=1,NZ

67 DW(NX+IA,NX+IB)=DW(NX+IA,NX+IB)+RFS(IA,IB)
* CALL VMULFFCDW,COV,NS,NS,NS,20,20,RES,20,IER)

DO 62 IA=1,NS
62 DHAM(IP)=DHAM(IP)+PTORES(IA,IA)

DO 63 IA=1,NZ
DO 63 IB=1,14Z

*63 DW(NX+IA,NX+IB)=0
CALL VMULFF(G,DC,NX,NU,NL,10,10,RES,20,IER)
DO 641 IA:1,NX
DO 641 Ihs1,NZ

641 DS(IA,NXIB)=RES(IA,IB)
CALL VMULFF(DS, OVNS,NS,NS,20,20 ,RESA,20,IER)
CALL VMULFF(RESALAI4,NS,NS,NS,20,20,REZ,20,IER)
DO 65 IA=1,NS

65 DHAM(IP)=DHAJ4(IP)+21*RES(IA, IA)
DO 66 IA=1,NX
DO 66 IB=1,NZ

66 DS(IA,NX+IB)=0
60 DC(I,J)=O
C
C Continue with another value of T from the distribution
C provided by the main program.
1000 CONTINUE

RETURN
END
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